

Virtual Memory/MMU
● Processor can be running in real mode or virtual

mode
– In real mode, the MMU does nothing, virtual

addresses are identical to real addresses
– In virtual mode, the MMU translates all memory

addresses from the virtual addresses into physical
addresses.

● Parts of the OS runs in real mode, user
programs can run in virtual mode.

MMU

MEM

Address

Data

+

CPU

MemData

Address

Base

Comp
AddrError

Length

+

mode

Interrupt Styles
● Status Interrupt

– Cause of interrupt is stored in a register

● Vectored Interrupt
– Cause of interrupt is implicitly defined by the

location jumped to when the interrupt occurs – the
interrupt vector

MIPS Interrupt/Exception
Implementation

● Access to Interrupt/Exception informations
implemented as a co-processor

● All accessible information is stored in co-
processor registers

● Special instructions
– mfc0 $localreg, $cpreg #move from co-processor
– mtc0 $localreg, $cpreg #move to co-processor
– eret # return from exception

Coprocessor 0 Registers

Status and Cause Reg Fields

Cause Flags in SPIM

Simple Exception Handler
.ktext 0x80000180

mov $k1, $at # Save $at register

sw $a0, save0 # Handler is not re-entrant and can’t use

sw $a1, save1 # stack to save $a0, $a1

Don’t need to save $k0/$k1

mfc0 $k0, $13 # Move Cause into $k0

srl $a0, $k0, 2 # Extract ExcCode field

andi $a0, $a0, 0xf

bgtz $a0, done # Branch if ExcCode is Int (0)

mov $a0, $k0 # Move Cause into $a0

mfc0 $a1, $14 # Move EPC into $a1

jal print_excp # Print exception error message

Simple Exception Handler 2
done: mfc0 $k0, $14 # Bump EPC

addiu $k0, $k0, 4 # Do not reexecute

faulting instruction

mtc0 $k0, $14 # EPC

mtc0 $0, $13 # Clear Cause register

mfc0 $k0, $12 # Fix Status register

andi $k0, 0xfffd # Clear EXL bit

ori $k0, 0x1 # Enable interrupts

mtc0 $k0, $12

lw $a0, save0 # Restore registers

lw $a1, save1

mov $at, $k1

eret # Return to EPC

