Virtual Memory/MMU

* Processor can be running in real mode or virtual
mode

- In real mode, the MMU does nothing, virtual
addresses are identical to real addresses

- In virtual mode, the MMU translates all memory
addresses from the virtual addresses into physical
addresses.

e Parts of the OS runs in real mode, user
programs can run in virtual mode.

CPU Base ?
L~ . mode

Address . ‘

DI Data

Address

MEM

Interrupt Styles

e Status Interrupt
— Cause of interrupt is stored in a register

* Vectored Interrupt

- Cause of interrupt is implicitly defined by the
location jJumped to when the interrupt occurs — the
iInterrupt vector

MIPS Interrupt/Exception
Implementation

* Access to Interrupt/Exception informations
iImplemented as a co-processor

e All accessible information is stored in co-
processor registers

e Special instructions

- mfcO S$localreg, $cpreg #move from co-processor
- mtcO $localreg, $cpreg #move to co-processor
- eret # return from exception

Coprocessor 0 Registers

Register Register

name number |Usage

BadVAddr 8 memory address at which an offending memory reference occurred
Count 9 timer

Compare 11 value compared against timer that causes interrupt when they match
Status 12 interrupt mask and enable bits

Cause 13 exception type and pending interrupt bits

EPC 14 address of instruction that caused exception

Config 16 configuration of machine

Status and Cause Reg Fields

S =
= =
o = A
o D D= =10
(T o? ow®
o © > =
O E o €5
15 8 4 1 0

Interrupt
mask

FIGURE A.7.1 The Status register.

31 15 8 6 2
Branch Pending Exception
delay interrupts code

FIGURE A.7.2 The Cause register.

Cause Flags in SPIM

Cause of exception

0 Int interrupt (hardware)
4 AdEL address error exception (load or instruction fetch)
5 AdES address error exception (store)
6 IBE bus error on instruction fetch
7 DBE bus error on data load or store
8 Sys syscall exception
9 Bp breakpoint exception
10 RI reserved instruction exception
11 CpU coprocessor unimplemented
12 Ov arithmetic overflow exception
13 Tr trap
15 FPE floating point

Simple Exception Handler

ktext 0x80000180

mov $k1, $at # Save $at register

sw $a0, save0 # Handler is not re-entrant and can’t use
sw $a1, savel # stack to save $a0, $a1

Don’'t need to save $k0/Sk1

mfcO $k0, $13 # Move Cause into $kO0

srl $a0, $k0, 2 # Extract ExcCode field

andi $a0, $a0, Oxf

bgtz $a0, done # Branch if ExcCode is Int (0)
mov $a0, $kO # Move Cause into $a0

mfcO $a1, $14 # Move EPC into $a1

jal print_excp # Print exception error message

Simple Exception

done: mfcO $k0, $14 # Bump EPC
addiu $k0, $kO0, 4 # Do not reexecute
faulting instruction

mtcO $k0, $14 # EPC

mtcO $0, $13 # Clear Cause register
mfcO $kO, $12 # Fix Status register
andi $kO0, Oxfffd # Clear EXL bit

ori $k0, Ox1 # Enable interrupts

mtcO $k0, $12

lw $a0, saveO # Restore registers

lw $a1, save1

mov $at, $k1

eret # Return to EPC

Handler 2

