
1

2

Multicycle Datapath

 As an added bonus, we can eliminate some of the extra hardware from
the single-cycle datapath.
— We will restrict ourselves to using each functional unit once per cycle,

just like before.
— But since instructions require multiple cycles, we could reuse some

units in a different cycle during the execution of a single instruction.
 For example, we could use the same ALU:

— to increment the PC (first clock cycle), and
— for arithmetic operations (third clock cycle).

Proposed execution stages

1. Instruction fetch and PC increment
2. Reading sources from the register file
3. Performing an ALU computation
4. Reading or writing (data) memory
5. Storing data back to the register file

3

Two extra adders

 Our original single-cycle datapath had an ALU and two adders.
 The arithmetic-logic unit had two responsibilities.

— Doing an operation on two registers for arithmetic instructions.
— Adding a register to a sign-extended constant, to compute effective

addresses for lw and sw instructions.
 One of the extra adders incremented the PC by computing PC + 4.
 The other adder computed branch targets, by adding a sign-extended,

shifted offset to (PC + 4).

4

The extra single-cycle adders

Read
address

Instruction
memory

Instruction
[31-0]

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg

4

Shift
left 2

PC Add

Add

0
M
u
x
1

PCSrc

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

5

Our new adder setup

 We can eliminate both extra adders in a multicycle datapath, and instead
use just one ALU, with multiplexers to select the proper inputs.

 A 2-to-1 mux ALUSrcA sets the first ALU input to be the PC or a register.
 A 4-to-1 mux ALUSrcB selects the second ALU input from among:

— the register file (for arithmetic operations),
— a constant 4 (to increment the PC),
— a sign-extended constant (for effective addresses), and
— a sign-extended and shifted constant (for branch targets).

 This permits a single ALU to perform all of the necessary functions.
— Arithmetic operations on two register operands.
— Incrementing the PC.
— Computing effective addresses for lw and sw.
— Adding a sign-extended, shifted offset to (PC + 4) for branches.

6

The multicycle adder setup highlighted

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0
1
2
3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Sign
extend

Shift
left 2

PC

4

0
M
u
x
1

 RegDst

0
M
u
x
1

 MemToReg

0
M
u
x
1

IorD

Address

Memory

Mem
Data

Write
data

MemRead

MemWrite

PCWrite

7

Eliminating a memory

 Similarly, we can get by with one unified memory, which will store both
program instructions and data. (a Princeton architecture)

 This memory is used in both the instruction fetch and data access stages,
and the address could come from either:
— the PC register (when we’re fetching an instruction), or
— the ALU output (for the effective address of a lw or sw).

 We add another 2-to-1 mux, IorD, to decide whether the memory is being
accessed for instructions or for data.

Proposed execution stages

1. Instruction fetch and PC increment
2. Reading sources from the register file
3. Performing an ALU computation
4. Reading or writing (data) memory
5. Storing data back to the register file

8

The new memory setup highlighted

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0
1
2
3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Sign
extend

Shift
left 2

PC

4

0
M
u
x
1

 RegDst

0
M
u
x
1

 MemToReg

0
M
u
x
1

IorD

Address

Memory

Mem
Data

Write
data

MemRead

MemWrite

PCWrite

9

Intermediate registers

 Sometimes we need the output of a functional unit in a later clock cycle
during the execution of one instruction.
— The instruction word fetched in stage 1 determines the destination of

the register write in stage 5.
— The ALU result for an address computation in stage 3 is needed as the

memory address for lw or sw in stage 4.
 These outputs will have to be stored in intermediate registers for future

use. Otherwise they would probably be lost by the next clock cycle.
— The instruction read in stage 1 is saved in Instruction register.
— Register file outputs from stage 2 are saved in registers A and B.
— The ALU output will be stored in a register ALUOut.
— Any data fetched from memory in stage 4 is kept in the Memory data

register, also called MDR.

10

The final multicycle datapath

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0
1
2
3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

PC

A

4[31-26]
[25-21]
[20-16]
[15-11]
[15-0]

Instruction
register

Memory
data

register

 IRWrite
0
M
u
x
1

 RegDst

0
M
u
x
1

 MemToReg

0
M
u
x
1

IorD

MemRead

MemWrite

PCWrite

ALU
OutB

11

Register write control signals

 We have to add a few more control signals to the datapath.
 Since instructions now take a variable number of cycles to execute, we

cannot update the PC on each cycle.
— Instead, a PCWrite signal controls the loading of the PC.
— The instruction register also has a write signal, IRWrite. We need to

keep the instruction word for the duration of its execution, and must
explicitly re-load the instruction register when needed.

 The other intermediate registers, MDR, A, B and ALUOut, will store data
for only one clock cycle at most, and do not need write control signals.

12

Summary of Multicycle Datapath

 A single-cycle CPU has two main disadvantages.
— The cycle time is limited by the worst case latency.
— It requires more hardware than necessary.

 A multicycle processor splits instruction execution into several stages.
— Instructions only execute as many stages as required.
— Each stage is relatively simple, so the clock cycle time is reduced.
— Functional units can be reused on different cycles.

 We made several modifications to the single-cycle datapath.
— The two extra adders and one memory were removed.
— Multiplexers were inserted so the ALU and memory can be used for

different purposes in different execution stages.
— New registers are needed to store intermediate results.

 Next time, we’ll look at controlling this datapath.

13

Controlling the multicycle datapath

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0
1
2
3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

PC

A

B
ALU
Out

4[31-26]
[25-21]
[20-16]
[15-11]
[15-0]

Instruction
register

Memory
data

register

 IRWrite
0
M
u
x
1

 RegDst

0
M
u
x
1

 MemToReg

0
M
u
x
1

IorD

MemRead

MemWrite

PCWrite

 Now we talk about how to control this datapath.

14

Multicycle control unit

 The control unit is responsible for producing all of the control signals.
 Each instruction requires a sequence of control signals, generated over

multiple clock cycles.
— This implies that we need a state machine.
— The datapath control signals will be outputs of the state machine.

 Different instructions require different sequences of steps.
— This implies the instruction word is an input to the state machine.
— The next state depends upon the exact instruction being executed.

 After we finish executing one instruction, we’ll have to repeat the entire
process again to execute the next instruction.

15

Finite-state machine for the control unit

Instruction fetch
and PC increment Register fetch and

branch computation

Effective address
computation

Memory
read

Register
 write

Op = LW/SW

Op = SW

Op = LW

Memory
write

R-type
 execution

Op = R-type

R-type
 writeback

Branch
 completionOp = BEQ

 Each bubble is a state
— Holds the control signals for a single cycle
— Note: All instructions do the same things during the first two cycles

16

Stage 1: Instruction Fetch

 Stage 1 includes two actions which use two separate functional units: the
memory and the ALU.
— Fetch the instruction from memory and store it in IR.

IR = Mem[PC]

— Use the ALU to increment the PC by 4.

PC = PC + 4

17

Stage 1: Instruction Fetch

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0
1
2
3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

PC

A

B
ALU
Out

4[31-26]
[25-21]
[20-16]
[15-11]
[15-0]

Instruction
register

Memory
data

register

 IRWrite
0
M
u
x
1

 RegDst

0
M
u
x
1

 MemToReg

0
M
u
x
1

IorD

MemRead

MemWrite

PCWrite

18

Stage 1: Instruction fetch and PC increment

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0
1
2
3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

PC

A

B
ALU
Out

4[31-26]
[25-21]
[20-16]
[15-11]
[15-0]

Instruction
register

Memory
data

register

 IRWrite
0
M
u
x
1

 RegDst

0
M
u
x
1

 MemToReg

0
M
u
x
1

IorD

MemRead

MemWrite

PCWrite

PC = PC + 4

IR = Mem[PC]

19

Stage 1 control signals

 Instruction fetch: IR = Mem[PC]

 Increment the PC: PC = PC + 4

 We’ll assume that all control signals not listed are implicitly set to 0.

Save memory contents to instruction register1IRWrite
Use PC as the memory read address0IorD
Read from memory1MemRead

DescriptionValueSignal

Change PC1PCWrite
Update PC from the ALU output0PCSource

Perform additionADDALUOp
Use constant 4 as the second ALU operand01ALUSrcB
Use PC as the first ALU operand0ALUSrcA

DescriptionValueSignal

20

Stage 2: Read registers

 Stage 2 is much simpler.
— Read the contents of source registers rs and rt, and store them in the

intermediate registers A and B. (Remember the rs and rt fields come
from the instruction register IR.)

A = Reg[IR[25-21]]
B = Reg[IR[20-16]]

21

Stage 2: Register File Read

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0
1
2
3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

PC

A

B
ALU
Out

4[31-26]
[25-21]
[20-16]
[15-11]
[15-0]

Instruction
register

Memory
data

register

 IRWrite
0
M
u
x
1

 RegDst

0
M
u
x
1

 MemToReg

0
M
u
x
1

IorD

MemRead

MemWrite

PCWrite

22

Stage 2 control signals

 No control signals need to be set for the register reading operations A =
Reg[IR[25-21]] and B = Reg[IR[20-16]].
— IR[25-21] and IR[20-16] are already applied to the register file.
— Registers A and B are already written on every clock cycle.

23

Executing Arithmetic Instructions: Stages 3 & 4

 We’ll start with R-type instructions like add $t1, $t1, $t2.
 Stage 3 for an arithmetic instruction is simply ALU computation.

ALUOut = A op B

— A and B are the intermediate registers holding the source operands.
— The ALU operation is determined by the instruction’s “func” field and

could be one of add, sub, and, or, slt.

 Stage 4, the final R-type stage, is to store the ALU result generated in the
previous cycle into the destination register rd.

Reg[IR[15-11]] = ALUOut

24

Stage 3 (R-Type): ALU operation

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0
1
2
3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

PC

A

B
ALU
Out

4[31-26]
[25-21]
[20-16]
[15-11]
[15-0]

Instruction
register

Memory
data

register

 IRWrite
0
M
u
x
1

 RegDst

0
M
u
x
1

 MemToReg

0
M
u
x
1

IorD

MemRead

MemWrite

PCWrite

25

Stage 4 (R-Type): Register Writeback

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0
1
2
3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

PC

A

B
ALU
Out

4[31-26]
[25-21]
[20-16]
[15-11]
[15-0]

Instruction
register

Memory
data

register

 IRWrite
0
M
u
x
1

 RegDst

0
M
u
x
1

 MemToReg

0
M
u
x
1

IorD

MemRead

MemWrite

PCWrite

26

Stage 3 (R-type): instruction execution

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0
1
2
3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

PC

A

B
ALU
Out

4[31-26]
[25-21]
[20-16]
[15-11]
[15-0]

Instruction
register

Memory
data

register

 IRWrite
0
M
u
x
1

 RegDst

0
M
u
x
1

 MemToReg

0
M
u
x
1

IorD

MemRead

MemWrite

PCWrite

Do some computation
on two source registers

Save the result
in ALUOut

27

Stage 4 (R-type): write back

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0
1
2
3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

PC

A

B
ALU
Out

4[31-26]
[25-21]
[20-16]
[15-11]
[15-0]

Instruction
register

Memory
data

register

 IRWrite
0
M
u
x
1

 RegDst

0
M
u
x
1

 MemToReg

0
M
u
x
1

IorD

MemRead

MemWrite

PCWrite

...and store it to
register “rd”

Take the ALU result
from the last cycle...

28

Stages 3-4 (R-type) control signals

 Stage 3 (execution): ALUOut = A op B

 Stage 4 (writeback): Reg[IR[15-11]] = ALUOut

Do the operation specified in the “func” fieldfuncALUOp
Use B as the second ALU operand00ALUSrcB
Use A as the first ALU operand1ALUSrcA

DescriptionValueSignal

ALUOut contains the data to write0MemToReg
Use field rd as the destination register1RegDst
Write to the register file1RegWrite

DescriptionValueSignal

29

Executing a beq instruction

 We can execute a branch instruction in three stages or clock cycles.
— But it requires a little cleverness…

— Stage 1 involves instruction fetch and PC increment.

IR = Mem[PC]
PC = PC + 4

— Stage 2 is register fetch and branch target computation.

A = Reg[IR[25-21]]
B = Reg[IR[20-16]]

— Stage 3 is the final cycle needed for executing a branch instruction.
• Assuming we have the branch target available

if (A == B) then
PC = branch_target

30

When should we compute the branch target?

 We need the ALU to do the computation.
— When is the ALU not busy?

ALUCycle

3

2

1

31

When should we compute the branch target?

 We need the ALU to do the computation.
— When is the ALU not busy?

ALUCycle

Comparing A & B3

Here2

PC = PC + 41

32

Optimistic execution

 But, we don’t know whether or not the branch is taken in cycle 2!!
 That’s okay…. we can still go ahead and compute the branch target first.

The book calls this optimistic execution.
— The ALU is otherwise free during this clock cycle.
— Nothing is harmed by doing the computation early. If the branch is not

taken, we can just ignore the ALU result.
 This idea is also used in more advanced CPU design techniques.

— Modern CPUs perform branch prediction, which we’ll discuss in a few
lectures in the context of pipelining.

33

Stage 2 Revisited: Compute the branch target

 To Stage 2, we’ll add the computation of the branch target.
— Compute the branch target address by adding the new PC (the original

PC + 4) to the sign-extended, shifted constant from IR.

ALUOut = PC + (sign-extend(IR[15-0]) << 2)

We save the target address in ALUOut for now, since we don’t know
yet if the branch should be taken.

— What about R-type instructions that always go to PC+4 ?

34

Stage 2 (Revisited): Branch Target Computation

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0
1
2
3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

PC

A

B
ALU
Out

4[31-26]
[25-21]
[20-16]
[15-11]
[15-0]

Instruction
register

Memory
data

register

 IRWrite
0
M
u
x
1

 RegDst

0
M
u
x
1

 MemToReg

0
M
u
x
1

IorD

MemRead

MemWrite

PCWrite

35

Stage 2: Register fetch & branch target computation

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0
1
2
3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

PC

A

B
ALU
Out

4[31-26]
[25-21]
[20-16]
[15-11]
[15-0]

Instruction
register

Memory
data

register

 IRWrite
0
M
u
x
1

 RegDst

0
M
u
x
1

 MemToReg

0
M
u
x
1

IorD

MemRead

MemWrite

PCWrite

Compute branch
target address

Read source
registers

36

Stage 2 control signals

 No control signals need to be set for the register reading operations A =
Reg[IR[25-21]] and B = Reg[IR[20-16]].
— IR[25-21] and IR[20-16] are already applied to the register file.
— Registers A and B are already written on every clock cycle.

 Branch target computation: ALUOut = PC + (sign-extend(IR[15-0]) << 2)

ALUOut is also written automatically on each clock cycle.

Add and save the result in ALUOutADDALUOp
Use (sign-extend(IR[15-0]) << 2) as second operand11ALUSrcB
Use PC as the first ALU operand0ALUSrcA

DescriptionValueSignal

37

Branch completion

 Stage 3 is the final cycle needed for executing a branch instruction.

if (A == B) then
PC = ALUOut

 Remember that A and B are compared by subtracting and testing for a
result of 0, so we must use the ALU again in this stage.

38

Stage 3 (BEQ): Branch Completion

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0
1
2
3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

PC

A

B
ALU
Out

4[31-26]
[25-21]
[20-16]
[15-11]
[15-0]

Instruction
register

Memory
data

register

 IRWrite
0
M
u
x
1

 RegDst

0
M
u
x
1

 MemToReg

0
M
u
x
1

IorD

MemRead

MemWrite

PCWrite

39

Stage 3 (beq): Branch completion

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0
1
2
3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

PC

A

B
ALU
Out

4[31-26]
[25-21]
[20-16]
[15-11]
[15-0]

Instruction
register

Memory
data

register

 IRWrite
0
M
u
x
1

 RegDst

0
M
u
x
1

 MemToReg

0
M
u
x
1

IorD

MemRead

MemWrite

PCWrite

Check for equality
of register contents

Use the target address
computed in stage 2

40

Stage 3 (beq) control signals

 Comparison: if (A == B) ...

 Branch: ...then PC = ALUOut

 ALUOut contains the ALU result from the previous cycle, which would be
the branch target. We can write that to the PC, even though the ALU is
doing something different (comparing A and B) during the current cycle.

Subtract, so Zero will be set if A = BSUBALUOp
Use B as the second ALU operand00ALUSrcB
Use A as the first ALU operand1ALUSrcA

DescriptionValueSignal

Change PC only if Zero is true (i.e., A = B)ZeroPCWrite
Update PC from the ALUOut register1PCSource

DescriptionValueSignal

41

Executing a sw instruction

 A store instruction, like sw $a0, 16($sp), also shares the same first two
stages as the other instructions.
— Stage 1: instruction fetch and PC increment.
— Stage 2: register fetch and branch target computation.

 Stage 3 computes the effective memory address using the ALU.

ALUOut = A + sign-extend(IR[15-0])

A contains the base register (like $sp), and IR[15-0] is the 16-bit constant
offset from the instruction word, which is not shifted.

 Stage 4 saves the register contents (here, $a0) into memory.

Mem[ALUOut] = B

Remember that the second source register rt was already read in Stage 2
(and again in Stage 3), and its contents are in intermediate register B.

42

Stage 3 (SW): Effective Address Computation

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0
1
2
3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

PC

A

B
ALU
Out

4[31-26]
[25-21]
[20-16]
[15-11]
[15-0]

Instruction
register

Memory
data

register

 IRWrite
0
M
u
x
1

 RegDst

0
M
u
x
1

 MemToReg

0
M
u
x
1

IorD

MemRead

MemWrite

PCWrite

43

Stage 4 (SW): Memory Write

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0
1
2
3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

PC

A

B
ALU
Out

4[31-26]
[25-21]
[20-16]
[15-11]
[15-0]

Instruction
register

Memory
data

register

 IRWrite
0
M
u
x
1

 RegDst

0
M
u
x
1

 MemToReg

0
M
u
x
1

IorD

MemRead

MemWrite

PCWrite

44

Stage 3 (sw): effective address computation

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0
1
2
3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

PC

A

B
ALU
Out

4[31-26]
[25-21]
[20-16]
[15-11]
[15-0]

Instruction
register

Memory
data

register

 IRWrite
0
M
u
x
1

 RegDst

0
M
u
x
1

 MemToReg

0
M
u
x
1

IorD

MemRead

MemWrite

PCWrite

Compute an effective
address and store it

in ALUOut

45

Stage 4 (sw): memory write

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0
1
2
3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

PC

A

B
ALU
Out

4[31-26]
[25-21]
[20-16]
[15-11]
[15-0]

Instruction
register

Memory
data

register

 IRWrite
0
M
u
x
1

 RegDst

0
M
u
x
1

 MemToReg

0
M
u
x
1

IorD

MemRead

MemWrite

PCWrite

...to store data
from one of the

registers...

Use the effective
address from stage 3...

...into memory.

46

Stages 3-4 (sw) control signals

 Stage 3 (address computation): ALUOut = A + sign-extend(IR[15-0])

 Stage 4 (memory write): Mem[ALUOut] = B

The memory’s “Write data” input always comes from the B intermediate
register, so no selection is needed.

Add and store the resulting address in ALUOut010ALUOp
Use sign-extend(IR[15-0]) as the second operand10ALUSrcB
Use A as the first ALU operand1ALUSrcA

DescriptionValueSignal

Use ALUOut as the memory address1IorD
Write to the memory1MemWrite

DescriptionValueSignal

47

Executing a lw instruction

 Finally, lw is the most complex instruction, requiring five stages.
 The first two are like all the other instructions.

— Stage 1: instruction fetch and PC increment.
— Stage 2: register fetch and branch target computation.

 The third stage is the same as for sw, since we have to compute an
effective memory address in both cases.
— Stage 3: compute the effective memory address.

48

Stages 4-5 (lw): memory read and register write

 Stage 4 is to read from the effective memory address, and to store the
value in the intermediate register MDR (memory data register).

MDR = Mem[ALUOut]

 Stage 5 stores the contents of MDR into the destination register.

Reg[IR[20-16]] = MDR

Remember that the destination register for lw is field rt (bits 20-16) and
not field rd (bits 15-11).

49

Stage 4 (LW): Memory Read

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0
1
2
3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

PC

A

B
ALU
Out

4[31-26]
[25-21]
[20-16]
[15-11]
[15-0]

Instruction
register

Memory
data

register

 IRWrite
0
M
u
x
1

 RegDst

0
M
u
x
1

 MemToReg

0
M
u
x
1

IorD

MemRead

MemWrite

PCWrite

50

Stage 4 (lw): memory read

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0
1
2
3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

PC

A

B
ALU
Out

4[31-26]
[25-21]
[20-16]
[15-11]
[15-0]

Instruction
register

Memory
data

register

 IRWrite
0
M
u
x
1

 RegDst

0
M
u
x
1

 MemToReg

0
M
u
x
1

IorD

MemRead

MemWrite

PCWrite

...to read data
from memory... Use the effective

address from stage 3...

...into MDR.

51

Stage 5 (LW): Register Writeback

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0
1
2
3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

PC

A

B
ALU
Out

4[31-26]
[25-21]
[20-16]
[15-11]
[15-0]

Instruction
register

Memory
data

register

 IRWrite
0
M
u
x
1

 RegDst

0
M
u
x
1

 MemToReg

0
M
u
x
1

IorD

MemRead

MemWrite

PCWrite

52

Stage 5 (lw): register write

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0
1
2
3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

PC

A

B
ALU
Out

4[31-26]
[25-21]
[20-16]
[15-11]
[15-0]

Instruction
register

Memory
data

register

 IRWrite
0
M
u
x
1

 RegDst

0
M
u
x
1

 MemToReg

0
M
u
x
1

IorD

MemRead

MemWrite

PCWrite

...and store it
in register rt.

Take MDR...

53

Stages 4-5 (lw) control signals

 Stage 4 (memory read): MDR = Mem[ALUOut]

The memory contents will be automatically written to MDR.

 Stage 5 (writeback): Reg[IR[20-16]] = MDR

Use ALUOut as the memory address1IorD
Read from memory1MemRead

DescriptionValueSignal

Write data from MDR (from memory)1MemToReg
Use field rt as the destination register0RegDst
Store new data in the register file1RegWrite

DescriptionValueSignal

54

Finite-state machine for the control unit

IorD = 0
MemRead = 1
IRWrite = 1
ALUSrcA = 0
ALUSrcB = 01
ALUOp = 010
PCSource = 0
PCWrite = 1

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 010

Instruction fetch
and PC increment

Register fetch and
branch computation

Effective address
computation

Memory
read

Register
 write

Op = LW/SW

Op = SW

Op = LW

MemWrite = 1
IorD = 1

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 010

MemRead = 1
IorD = 1

RegWrite = 1
RegDst = 0

MemToReg = 1

Memory
write

R-type
 execution

Op = R-type ALUSrcA = 1
ALUSrcB = 00
ALUOp = func

RegWrite = 1
RegDst = 1

MemToReg = 0

R-type
 writeback

Branch
 completionOp = BEQ

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 110

PCWrite = Zero
PCSource = 1

55

Implementing the FSM

 This can be translated into a state table; here are the first two states.

 You can implement this the hard way.
— Represent the current state using flip-flops or a register.
— Find equations for the next state and (control signal) outputs in terms

of the current state and input (instruction word).
 Or you can use the easy way.

— Stick the whole state table into a memory, like a ROM.
— This would be much easier, since you don’t have to derive equations.

X0101100XX000X0Compute
eff addr

LW/S
W

Reg
Fetch

X0101100XX000X0R-type
execute

R-typeReg
Fetch

X0101100XX000X0Branch
compl

BEQReg
Fetch

00100100XX10101Reg
Fetch

XInstr
Fetch

PC
Source

ALU
Op

ALU
SrcB

ALU
SrcA

Reg
Write

MemTo
Reg

Reg
Dst

IR
Write

Mem
Write

Mem
ReadIorD

PC
Write

Next
State

Input
(Op)

Current
State

Output (Control signals)

56

Summary

 Now you know how to build a multicycle controller!
— Each instruction takes several cycles to execute.
— Different instructions require different control signals and a different

number of cycles.
— We have to provide the control signals in the right sequence.

