
1

Today’s lecture

! Last lecture we started talking about control flow in MIPS (branches)

! Finish up control-flow (branches) in MIPS

— if/then

— loops

— case/switch

! Array Indexing vs. Pointers

— In particular pointer arithmetic

— String representation

Slides adapted from Josep Torrellas, Craig Zilles, and Howard Huang

2

! We can use branch instructions to translate if-then statements into MIPS
assembly code.

 v0 = a0; move $v0 $a0
 if (v0 < 0) bge $v0, $0, Label
 v0 = -v0; sub $v0, 0, $v0
 v1 = v0 + v0; Label: add $v1, $v0, $v0

! Sometimes it’s easier to invert the original condition.

— In this case, we changed “continue if v0 < 0” to “skip if v0 >= 0”.

— This saves a few instructions in the resulting assembly code.

Translating an if-then statement

3

Translating an if-then-else statements

! If there is an else clause, it is the target of the conditional branch

— And the then clause needs a jump over the else clause

 // increase the magnitude of v0 by one
 if (v0 < 0) bge $v0, $0, E
 v0 --; sub $v0, $v0, 1
 j L
 else
 v0 ++; E: add $v0, $v0, 1
 v1 = v0; L: move $v1, $v0

— Drawing the control-flow graph can help you out.

4

! It can be useful to draw control-flow graphs when writing loops and
conditionals in assembly:

 // Find the absolute value of *a0

 v0 = *a0;

 if (v0 < 0)

 v0 = -v0;

 v1 = v0 + v0;

 // Sum the elements of a0

 v0 = 0;

 t0 = 0;

 while (t0 < 5) {

 v0 = v0 + a0[t0];

 t0++;

 }

Control-flow graphs

5

What does this code do?

 label: sub $a0, $a0, 1

 bne $a0, $zero, label

Loops

6

Loop: j Loop!! # goto Loop

 for (i = 0; i < 4; i++) {

! // stuff

 }

 add $t0, $zero, $zero # i is initialized to 0, $t0 = 0

Loop: // stuff

 addi $t0, $t0, 1 # i ++

 slti $t1, $t0, 4 # $t1 = 1 if i < 4

 bne $t1, $zero, Loop # go to Loop if i < 4

7

Case/Switch Statement

! Many high-level languages support multi-way branches, e.g.

 switch (two_bits) {
 case 0: break;
 case 1: /* fall through */
 case 2: count ++; break;
 case 3: count += 2; break;
 }

! We could just translate the code to if, thens, and elses:

 if ((two_bits == 1) || (two_bits == 2)) {
 count ++;
 } else if (two_bits == 3) {
 count += 2;
 }

! This isn’t very efficient if there are many, many cases.

8

Case/Switch Statement

 switch (two_bits) {
 case 0: break;
 case 1: /* fall through */
 case 2: count ++; break;
 case 3: count += 2; break;
 }

! Alternatively, we can:

1. Create an array of jump targets

2. Load the entry indexed by the variable two_bits

3. Jump to that address using the jump register, or jr, instruction

9

Representing strings

! A C-style string is represented by an array of bytes.

— Elements are one-byte ASCII codes for each character.

— A 0 value marks the end of the array.

32 space 48 0 64 @ 80 P 96 ` 112 p
33 ! 49 1 65 A 81 Q 97 a 113 q

34 ” 50 2 66 B 82 R 98 b 114 r

35 # 51 3 67 C 83 S 99 c 115 s
36 $ 52 4 68 D 84 T 100 d 116 t

37 % 53 5 69 E 85 U 101 e 117 u

38 & 54 6 70 F 86 V 102 f 118 v

39 ’ 55 7 71 G 87 W 103 g 119 w

40 (56 8 72 H 88 X 104 h 120 x

41) 57 9 73 I 89 Y 105 I 121 y

42 * 58 : 74 J 90 Z 106 j 122 z

43 + 59 ; 75 K 91 [107 k 123 {

44 , 60 < 76 L 92 \ 108 l 124 |

45 - 61 = 77 M 93] 109 m 125 }

46 . 62 > 78 N 94 ^ 110 n 126 ~

47 / 63 ? 79 O 95 _ 111 o 127 del

10

Null-terminated Strings

! For example, “Harry Potter” can be stored as a 13-byte array.

! Since strings can vary in length, we put a 0, or null, at the end of the string.

— This is called a null-terminated string

! Computing string length

— We’ll look at two ways.

72 97 114 114 121 32 80 111 116 116 101 114 0

H a r r y P o t t e r \0

int foo(char *s) {

int L = 0;

while (*s++) {

++L;

}

return L;

}

What does this C code do?

11

12

Array Indexing Implementation of strlen

int strlen(char *string) {
 int len = 0;
 while (string[len] != 0) {
 len ++;

 }
 return len;
}

13

Pointers & Pointer Arithmetic

! Many programmers have a vague understanding of pointers

— Looking at assembly code is useful for their comprehension.

int strlen(char *string) {
 int len = 0;
 while (string[len] != 0) {
 len ++;

 }
 return len;
}

int strlen(char *string) {
 int len = 0;
 while (*string != 0) {
 string ++;

 len ++;
 }
 return len;

}

14

What is a Pointer?

! A pointer is an address.

! Two pointers that point to the same thing hold the same address

! Dereferencing a pointer means loading from the pointer’s address

! A pointer has a type; the type tells us what kind of load to do

— Use load byte (lb) for char *

— Use load half (lh) for short *

— Use load word (lw) for int *

— Use load single precision floating point (l.s) for float *

! Pointer arithmetic is often used with pointers to arrays

— Incrementing a pointer (i.e., ++) makes it point to the next element

— The amount added to the point depends on the type of pointer

• pointer = pointer + sizeof(pointer’s type)

!1 for char *, 4 for int *, 4 for float *, 8 for double *

15

What is really going on here…

int strlen(char *string) {

 int len = 0;

 while (*string != 0) {

 string ++;

 len ++;

 }

 return len;

}

Pointers Summary

! Pointers are just addresses!!

— “Pointees” are locations in memory

! Pointer arithmetic updates the address held by the pointer

— “string ++” points to the next element in an array

— Pointers are typed so address is incremented by sizeof(pointee)

16

