Announcements

= Homework 4 out today
= Dec 7t is the last day you can turn in Lab 4 and HW4, so plan ahead.

Thread level parallelism: Multi-Core Processors

= Two (or more) complete processors, fabricated on the same silicon chip
= Execute instructions from two (or more) programs/threads at same time

omurese

——LS'-WeEtBW o 4 IBM Power5

Multi-Cores are Everywhere

Intel Core Duo in new Macs: 2 x86 processors on same chip

' CoreDuc |

XBox360: 3 PowerPC cores '.P
)B0K360 °.,

Vdiz W E
\..' .°

.

Sony Playstation 3: Cell processor, an asymmetric
multi-core with 9 cores (1 general-purpose, 8
special purpose SIMD processors)

Why Multi-cores Now?

Number of transistors we can put on a chip growing exponentially...

transistors
Intel” tanium@ Processor
Intel” Pentium=a 4 Procossor | | 100,000,000
Intel” Pentiumn il Processor

Intel” Pontium® il Processor 10,000,000
Intel” Pantiumn Procossor

INtel486™ Procossor '
1 1,000,000

INtel386™ Processor

1970 1975 1980 1985 1990 1995 2000 2005

... and performance growing too...

Pentium 4 4
35 (Cedarmill)

30 power = perf * 1.75

25 Pentium 4
(Willamette) *

Pentium Pro.+

486 * Pentium

0 2 4 6 8
Scalar Performance 1

= But power is growing even faster!!
— Power has become limiting factor in current chips

‘ C... nl ns.u'lll T—’WA/V\ \I’\l rava _ |

, What is a Thread?

7 re
J.
ﬂ.%}ﬂwm‘ﬁ] W,WE
:) \/t‘é*,
O
\/\/\/

V Qmj O—-(Sor— MSY"VU\

= What does Shared Memory imply?

—

= Machine model

r—J [

w1 (o] -

13

As programmers, do we care?

= What happens if we run a program on a multi-core?

void
array add(int A[], int B[], int C[], int length) {
int 1i;
for (1 = 0 ; 1 < length ; ++i) {
[

@i] = A[1] + B[i]ﬁ

}

What if we want a program to run on both processors:

= We have to explicitly tell the machine exactly how to do this
— This is called parallel programming or concurrent programming

= There are many parallel/concurrent programming models
— We will look at a relatively simple one: fork-join parallelism
— Posix threads and explicit synchronization (CSE4517?)

master
thread

{ parallel region } { parallel region }

<ROrk N-

N B . . . (J':O | 2/
EBreak work into N pieces (and do it) -
Egbin (N-1) threads - {2 - 1S I6’5 -
l
void <1 ~(. :
array add(int A[], int B[], 1int C[], int length) {
] cpu _num = fork (N-1); v les
int 1i; ¢ U
7 for (1 = cpu num ; 1 < length ; 1 += N)
C[i] = A[i] + BI1];
}
3 join();

How goPd J_SL this with caches?

Fork/Join Logical Example

1 threads v

P
j§tu

1R

f

e

L]

How does this help performance?

= Parallel speedup measures improvement from parallelization:

time for best serial version —

speedup(p) =
time for version with p processors

= What can we realistically expect?

A R

| speedup(p)

—bh

>
: p = number of processors

Reason #1: Amdahl’s Law

* In general, the whole computation is not (easily) parallelizable

—_—

master
thread

{ parallel region }

Serial regions

Reason #1: Amdahl’s Law

= Suppose a program takes 1 unit of time to execute serially
= A fraction of the program,(s) is inherently serial (unparallelizable)

-«+— Time on a single processor ———»

s (1-s8) I

LM' New Execution 1-s

— f—

Time on a Time a P
-+— parallel —

machine

= For example, consider a program that, when executing on one processor, spen
10% of its time in a non-parallelizable region. How much faster will this progra
run on a 3-processor system?

New Execution _ 9T =~ = _ 41,1 speedup= < T _ 7
Time 3 -
0. 41
= What is the maximum Speedup from parallelization? T
: Sr— =\0
9 0, \"\' =~ 0) | ¢ (>

- Q- (A

Reason #2: Overhead

void

array add(int A[], int B[], int C[], int length) {
cpu num = fork (N-1);,

int 1i; :

for (1 = cpu num ; i < length ; i += N) { Svmb‘"l}
Cl[i] = A[i] + BI[i];

}

join() ,

}

— Forking and joining is not instantaneous
e Involves communicating between processors
e May involve calls into the operating system
. . DGMJ
— Depends on the implementation

Co
¢ “Se

' 1-s Y Oy,
New Execution _ v s+ deerhead(P) b L%:h)
Time P

Programming Explicit Thread-level Parallelism

= As noted previously, the programmer must specify how to parallelize
= But, want path of least effort

= Division of labor between the Human and the Compiler
— Humans: good at expressing parallelism, bad at bookkeeping
— Compilers: bad at finding parallelism, good at bookkeeping

-~

= Want a way to take serial code and say “Do this in parallel!” without:
— Having to manage the synchronizatio?between Processors
— Having to know a priori how many processors the system has
— Deciding exactlglrwhich processor does what
— Replicate the private state of each thread

—

= OpenMP: an industry standard set of compiler extensions
— Works very well for programs with structured parallelism.

Performance Optimization

= Until you are an expert, first write a working version of the program
= Then, and only then, begin tuning, first collecting data, and iterate
— Otherwise, you will likely optimize what doesn’t matter

3. Analyze Data
1. Create a 2. Collect and Identity

Benchmark Data Performance
Problems

5.1s
Problem 4. Fix the -~

Fixed? problems in your
code or system

6. Are
performance
requirements

“We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil.” -- Sir Tony Hoare

Using tools to do instrumentation

= Two GNU tools integrated into the GCC C compiler

= Gprof: The GNU profiler
— Compile with the -pg flag

e This flag causes gcc to keep track of which pieces of source code
correspond to which chunks of object code and links in a profilin
signal handler.

— Run as normal; program requests the operating system to periodicall
send it signals; the signal handler records what instruction was
executing when the signal was received in a file called gmon . out

— Display results using gprof command
e Shows how much time is being spent in each function.

e Shows the calling context (the path of function calls) to the hot
spot.

Example gprof output

FEach sample counts as 0.01 seconds. \y
% cumulative self self total
time seconds seconds calls s/call s/call name
(EifE@ 4.16 4.16 37913758 0.00 0.00 cache access
16.14 4.98 0.82 1 0.82 5.08 sim main
1.38 5.05 0.07 6254582 0.00 0.00 wupdate way list
0.59 5.08 0.03 1428644 0.00 0.00 dl1l access fn
0.00 5.08 0.00 711226 0.00 0.00 dl2 access fn
0.00 5.08 0.00 256830 0.00 0.00 vyylex

Over 80% of time spent in one function

Provides calling context (main calls sim main calls cache access) of hots

index % time self children called name
0.82 4.26 1/1 main [2]
[1] 100.0 0.82 4.26 1 sim main [1]
4.18 0.07 36418454/36484188 cache access <cycle 1> [4
0.00 0.01 10/10 sys_syscall [9]
0.00 0.00 2935/2967 mem_ translate [16]
0.00 0.00 2794/2824 mem newpage [18]

Using tools for instrumentation (cont.)

Gprof didn’t give us information on where in the function we were
spending time. (cache access is a big function; still needle in

haystack)
Gcov: the GNU coverage tool
— Compile/link with the -fprofile-arcs -ftest-coverage options

e Adds code during compilation to add counters to every control
flow edge (much like our by hand instrumentation) to compute
how frequently each block of code gets executed.

— Run as normal
— For each xyz.c file an xyz.gdna and xyz.gcno file are generated
— Post-process with gcov xyz.c
e Computes execution frequency of each line of code
o Marks with ##### any lines not executed
» Useful for making sure that you tested your whole program

Example gcov output

4
14282656

A A S

ik S

A A
A

753030193

P————— e

751950759:
738747537 :

540:
541:
542:
543:
544
545:
546:
547:
548:
549:
550:
551:
552:
553:
554:
555:
556:
557:
558:

Code never executed

if (cp->hsize) {
int hindex = CACHE HASH(cp, tag);

for (blk=cp->sets[set].hash[hindex];
blk;
blk=blk->hash next)
{
if (blk->tag == tag && (blk->status & CACHE BLK VALIL
goto cache hit;
}
} else {
/* linear search the way list */
for (blk=cp->sets[set].way head;
blk;
blk=blk->way next) {
if (blk->tag == tag && (blk->status & CACHE BLK VALIL
goto cache hit;

Loop executed over 50 interations on average (751950759/14282656)

—

Summary

= Multi-core is having more than one processor on the same chip.
— Soon most PCs/servers and game consoles will be multi-core
— Results from Moore’s law and power constraint

= Exploiting multi-core requires parallel programming
— Automatically extracting parallelism too hard for compiler, in general
— But, can have compiler do much of the bookkeeping for us
— OpenMP

= Fork-Join model of parallelism

— At parallel region, fork a bunch of threads, do the work in parallel, ar
then join, continuing with just one thread

— Expect a speedup of less than P on P processors
 Amdahl’s Law: speedup limited by serial portion of program
e Overhead: forking and joining are not free

