
1

A Timely Question.

 Most modern operating systems pre-emptively schedule programs.
— If you are simultaneously running two programs A and B, the O/S will

periodically switch between them, as it sees fit.
— Specifically, the O/S will:

• Stop A from running
• Copy A’s register values to memory
• Copy B’s register values from memory
• Start B running

 How does the O/S stop program A?

2

I/O Programming, Interrupts, and Exceptions

 Most I/O requests are made by applications or the operating system, and
involve moving data between a peripheral device and main memory.

 There are two main ways that programs communicate with devices.
— Memory-mapped I/O
— Isolated I/O

 There are also several ways of managing data transfers between devices
and main memory.
— Programmed I/O
— Interrupt-driven I/O
— Direct memory access

 Interrupt-driven I/O motivates a discussion about:
— Interrupts
— Exceptions
— and how to program them…

3

Communicating with devices

 Most devices can be considered as
memories, with an “address” for
reading or writing.

 Many instruction sets often make this
analogy explicit. To transfer data to
or from a particular device, the CPU
can access special addresses.

 Here you can see a video card can be
accessed via addresses 3B0-3BB, 3C0-
3DF and A0000-BFFFF.

 There are two ways these addresses
can be accessed.

4

Memory-mapped I/O

 With memory-mapped I/O, one address space is divided
into two parts.
— Some addresses refer to physical memory locations.
— Other addresses actually reference peripherals.

 For example, an Apple IIe had a 16-bit address bus which
could access a whole 64KB of memory.
— Addresses C000-CFFF in hexadecimal were not part of

memory, but were used to access I/O devices.
— All the other addresses did reference main memory.

 The I/O addresses are shared by many peripherals. In the
Apple IIe, for instance, C010 is attached to the keyboard
while C030 goes to the speaker.

 Some devices may need several I/O addresses.

Memory

I/O

Memory

C000

D000

FFFF

0000

5

Programming memory-mapped I/O

 To send data to a device, the CPU writes to the appropriate I/O address.
The address and data are then transmitted along the bus.

 Each device has to monitor the address bus to see if it is the target.
— The Apple IIe main memory ignores any transactions whose address

begins with bits 1100 (addresses C000-CFFF).
— The speaker only responds when C030 appears on the address bus.

Control
Address
Data

Hard disks CD-ROM Network DisplayCPU Memory

6

Isolated I/O

 Another approach is to support separate address
spaces for memory and I/O devices, with special
instructions that access the I/O space.

 For instance, 8086 machines have a 32-bit address
space.
— Regular instructions like MOV reference RAM.
— The special instructions IN and OUT access a

separate 64KB I/O address space.

Main
memory

00000000

FFFFFFFF

I/O
devices

00000000

0000FFFF

7

Comparing memory-mapped and isolated I/O

 Memory-mapped I/O with a single address space is nice because the same
instructions that access memory can also access I/O devices.
— For example, issuing MIPS sw instructions to the proper addresses can

store data to an external device.
 With isolated I/O, special instructions are used to access devices.

— This is less flexible for programming.

8

Transferring data with programmed I/O

 The second important question is how data is
transferred between a device and memory.

 Under programmed I/O, it’s all up to a user
program or the operating system.
— The CPU makes a request and then waits for

the device to become ready (e.g., to move
the disk head).

— Buses are only 32-64 bits wide, so the last
few steps are repeated for large transfers.

 A lot of CPU time is needed for this!
— If the device is slow the CPU might have to

wait a long time—as we will see, most
devices are slow compared to modern CPUs.

— The CPU is also involved as a middleman for
the actual data transfer.

(This CPU flowchart is based on one from Computer
Organization and Architecture by William Stallings.)

CPU sends read
request to device

CPU waits
for device

CPU reads word
from device

CPU writes word
to main memory

Done?

Ready

Not ready

No

Yes

9

Can you hear me now? Can you hear me now?

 Continually checking to see if a device is ready
is called polling.

 It’s not a particularly efficient use of the CPU.
— The CPU repeatedly asks the device if it’s

ready or not.
— The processor has to ask often enough to

ensure that it doesn’t miss anything, which
means it can’t do much else while waiting.

 An analogy is waiting for your car to be fixed.
— You could call the mechanic every minute,

but that takes up all your time.
— A better idea is to wait for the mechanic to

call you.

CPU sends read
request to device

CPU waits
for device

Ready

Not ready

10

Interrupt-driven I/O

 Interrupt-driven I/O attacks the problem of the
processor having to wait for a slow device.

 Instead of waiting, the CPU continues with other
calculations. The device interrupts the processor
when the data is ready.

 The data transfer steps are still the same as with
programmed I/O, and still occupy the CPU.

(Flowchart based on Stallings again.)

CPU sends read
request to device

CPU reads word
from device

CPU writes word
to main memory

Done?

CPU receives interrupt

No

Yes

CPU does other stuff

. . .

11

Interrupts

 Interrupts are external events that require the processor’s attention.
— Peripherals and other I/O devices may need attention.
— Timer interrupts to mark the passage of time.

 These situations are not errors.
— They happen normally.
— All interrupts are recoverable:

• The interrupted program will need to be resumed after the
interrupt is handled.

 It is the operating system’s responsibility to do the right thing, such as:
— Save the current state.
— Find and load the correct data from the hard disk
— Transfer data to/from the I/O device.

12

Exception handling

 Exceptions are typically errors that are detected within the processor.
— The CPU tries to execute an illegal instruction opcode.
— An arithmetic instruction overflows, or attempts to divide by 0.
— The a load or store cannot complete because it is accessing a virtual

address currently on disk
• we’ll talk about virtual memory later in 378.

 There are two possible ways of resolving these errors.
— If the error is un-recoverable, the operating system kills the program.
— Less serious problems can often be fixed by the O/S or the program

itself.

13

Instruction Emulation: an exception handling example

 Periodically ISA’s are extended with new instructions
— e.g., SSE, SSE2, etc.

 If programs are compiled with these new instructions, they will not run
on older implementations (e.g., a Pentium).
— This is not ideal. This is a “forward compatibility” problem.

 Though we can’t change existing hardware, we can add software to
handle these instructions. This is called “emulation”.

 It’s slower, but it works. (if you wanted fast, you wouldn’t have a Pentium)

Execute Application Execute Application

Decode inst in software;

Perform it’s functionality

User

Kernel

Illegal opcode
exception

Return from
exception

14

How interrupts/exceptions are handled

 For simplicity exceptions and interrupts are handled the same way.
 When an exception/interrupt occurs, we stop execution and transfer

control to the operating system, which executes an “exception handler”
to decide how it should be processed.

 The exception handler needs to know two things.
— The cause of the exception (e.g., overflow or illegal opcode).
— What instruction was executing when the exception occurred. This

helps the operating system report the error or resume the program.
 This is another example of interaction between software and hardware,

as the cause and current instruction must be supplied to the operating
system by the processor.

15

MIPS Interrupt Programming

 In order to receive interrupts, the software has to enable them.
— On a MIPS processor, this is done by writing to the Status register.

• Interrupts are enabled by setting bit zero.

 MIPS has multiple interrupt levels
— Interrupts for different levels can be selectively enabled.
— To receive an interrupt, it’s bit in the interrupt mask (bits 8-15 of the

Status register) must be set.
• In the Figure, interrupt level 15 is enabled.

11

16

MIPS Interrupt Programming

 When an interrupt occurs, the Cause register indicates which one.
— For an exception, the exception code field holds the exception type.
— For an interrupt, the exception code field is 0000 and bits will be set

for pending interrupts.
• The register below shows a pending interrupt at level 15

 The exception handler is generally part of the operating system.

1 0 0 0 0

17

Direct memory access

 One final method of data transfer is to introduce a
direct memory access, or DMA, controller.

 The DMA controller is a simple processor which does
most of the functions that the CPU would otherwise
have to handle.
— The CPU asks the DMA controller to transfer

data between a device and main memory. After
that, the CPU can continue with other tasks.

— The DMA controller issues requests to the right
I/O device, waits, and manages the transfers
between the device and main memory.

— Once finished, the DMA controller interrupts the
CPU.

(Flowchart again.)

CPU sends read
request to DMA

unit

CPU receives DMA
interrupt

CPU does other stuff

. . .

18

Main memory problems

 As you might guess, there are some complications with DMA.
— Since both the processor and the DMA controller may need to access

main memory, some form of arbitration is required.
— If the DMA unit writes to a memory location that is also contained in

the cache, the cache and memory could become inconsistent.

System bus

DMA unit Hard disks NetworkCPU &
cache

Memory CD-ROM

