
! Topics

— Memory review

— Memory & Loads/Stores in MIPS

• write MIPS programs that use more than just registers

— Control flow MIPS

• loops

• if, if/else and case/switch

1

CS378: Machine Organization and Assembly Language

Fall 2007

Announcements

! Homework 1 will be posted today

— due 1 week from today, Friday, Oct 5th, 5pm

— remember the late policy. Use your late days wisely.

! Find a lab partner soon

! Use feedback form on the webpage to tell us how we are doing

! We might need to shuffle the lecture schedule to accommodate the
material you will need for the Lab0 assignment sooner.

— the goal is to give you more time for the lab, which is a good thing

2

3

Memory review

! Memory sizes are specified much like register files; here is a 2k x n RAM.

! A chip select input CS enables or “disables” the RAM.

! ADRS specifies the memory location to access.

! WR selects between reading from or writing to the memory.

— To read from memory, WR should be set to 0. OUT will be the n-bit
value stored at ADRS.

— To write to memory, we set WR = 1. DATA is the n-bit value to store in
memory.

CS WR Operation

0 x None

1 0 Read selected address

1 1 Write selected address

 2k ! n memory

ADRS OUT
DATA
CS
WR

nk

n

4

MIPS memory

! MIPS memory is byte-addressable, which means that each memory address
references an 8-bit quantity.

! The MIPS architecture can support up to 32 address lines.

— This results in a 232 x 8 RAM, which would be 4 GB of memory.

— Not all actual MIPS machines will have this much!

 232 ! 8 memory

ADRS OUT
DATA
CS
WR

832

8

5

Loading and storing bytes

! The MIPS instruction set includes dedicated load and store instructions for
accessing memory

! The main difference is that MIPS uses indexed addressing.

— The address operand specifies a signed constant and a register.

— These values are added to generate the effective address.

! The MIPS “load byte” instruction lb transfers one byte of data from main
memory to a register.

 lb $t0, 20($a0) # $t0 = Memory[$a0 + 20]

! The “store byte” instruction sb transfers the lowest byte of data from a
register into main memory.

 sb $t0, 20($a0) # Memory[$a0 + 20] = $t0

6

Loading and storing words

! You can also load or store 32-bit quantities—a complete word instead of
just a byte—with the lw and sw instructions.

 lw $t0, 20($a0) # $t0 = Memory[$a0 + 20]

 sw $t0, 20($a0) # Memory[$a0 + 20] = $t0

! Most programming languages support several 32-bit data types.

— Integers

— Single-precision floating-point numbers

— Memory addresses, or pointers

! Unless otherwise stated, we’ll assume words are the basic unit of data.

7

! So, to compute with memory-based data, you must:

1. Load the data from memory to the register file.

2. Do the computation, leaving the result in a register.

3. Store that value back to memory if needed.

! For example, let’s say that you wanted to do the same addition, but the
values were in memory. How can we do the following using MIPS assembly
language?

char A[4] = {1, 2, 3, 4};
int result;

result = A[0] + A[1] + A[2] + A[3];

Computing with memory

8

An array of words

! Remember to be careful with memory addresses when accessing words.

! For instance, assume an array of words begins at address 2000.

— The first array element is at address 2000.

— The second word is at address 2004, not 2001.

! Example, if $a0 contains 2000, then

lw $t0, 0($a0)

 accesses the first word of the array, but

lw $t0, 8($a0)

 would access the third word of the array, at address 2008.

9

Memory alignment

! Keep in mind that memory is byte-addressable, so a 32-bit word actually
occupies four contiguous locations (bytes) of main memory.

! The MIPS architecture requires words to be aligned in memory; 32-bit
words must start at an address that is divisible by 4.

— 0, 4, 8 and 12 are valid word addresses.

— 1, 2, 3, 5, 6, 7, 9, 10 and 11 are not valid word addresses.

— Unaligned memory accesses result in a bus error, which you may have
unfortunately seen before.

! This restriction has relatively little effect on high-level languages and
compilers, but it makes things easier and faster for the processor.

0 1 2 3 4 5 6 7 8 9 10 11

Word 1 Word 2 Word 3

Address

8-bit data

10

Pseudo-instructions

! MIPS assemblers support pseudo-instructions that give the illusion of a
more expressive instruction set, but are actually translated into one or
more simpler, “real” instructions.

! For example, you can use the li and move pseudo-instructions:

 li $a0, 2000 # Load immediate 2000 into $a0

 move $a1, $t0 # Copy $t0 into $a1

! They are probably clearer than their corresponding MIPS instructions:

 addi $a0, $0, 2000 # Initialize $a0 to 2000

 add $a1, $t0, $0 # Copy $t0 into $a1

! We’ll see lots more pseudo-instructions this semester.

— A complete list of instructions is given in Appendix A of the text.

— Unless otherwise stated, you can always use pseudo-instructions in
your assignments and on exams.

11

Control flow in high-level languages

! The instructions in a program usually execute one after another, but it’s
often necessary to alter the normal control flow.

! Conditional statements execute only if some test expression is true.

 // Find the absolute value of a0
 v0 = a0;
 if (v0 < 0)
 v0 = -v0; // This might not be executed
 v1 = v0 + v0;

! Loops cause some statements to be executed many times.

 // Sum the elements of a five-element array a0
 v0 = 0;
 t0 = 0;
 while (t0 < 5) {
 v0 = v0 + a0[t0]; // These statements will
 t0++; // be executed five times
 }

12

Control-flow graphs

 // Find the absolute value of a0
 v0 = a0;
 if (v0 < 0)
 v0 = -v0;
 v1 = v0 + v0;

 // Sum the elements of
 v0 = 0;
 t0 = 0;
 while (t0 < 5) {
 v0 = v0 + a0[t0];
 t0++;
 }

13

! MIPS’s control-flow instructions

j // for unconditional jumps

bne and beq // for conditional branches

slt and slti // set if less than (w/o and w an immediate)

! Now we’ll talk about

— MIPS’s pseudo branches

— if/else

— case/switch

MIPS control instructions

14

! The MIPS processor only supports two branch instructions, beq and bne, but
to simplify your life the assembler provides the following other branches:

 blt $t0, $t1, L1 // Branch if $t0 < $t1
 ble $t0, $t1, L2 // Branch if $t0 <= $t1
 bgt $t0, $t1, L3 // Branch if $t0 > $t1
 bge $t0, $t1, L4 // Branch if $t0 >= $t1

! There are also immediate versions of these branches, where the second
source is a constant instead of a register.

! Later this quarter we’ll see how supporting just beq and bne simplifies the
processor design.

Pseudo-branches

15

! Most pseudo-branches are implemented using slt. For example, a branch-
if-less-than instruction blt $a0, $a1, Label is translated into the
following.

 slt $at, $a0, $a1 // $at = 1 if $a0 < $a1
 bne $at, $0, Label // Branch if $at != 0

! This supports immediate branches, which are also pseudo-instructions. For
example, blti $a0, 5, Label is translated into two instructions.

 slti $at, $a0, 5 // $at = 1if $a0 < 5
 bne $at, $0, Label // Branch if $a0 < 5

! All of the pseudo-branches need a register to save the result of slt, even
though it’s not needed afterwards.

— MIPS assemblers use register $1, or $at, for temporary storage.

— You should be careful in using $at in your own programs, as it may be
overwritten by assembler-generated code.

Implementing pseudo-branches

16

! We can use branch instructions to translate if-then statements into MIPS
assembly code.

 v0 = a0; move $v0 $a0
 if (v0 < 0) bge $v0, $0 Label
 v0 = -v0; sub $v0, 0, $v0
 v1 = v0 + v0; Label: add $v1, $v0, $v0

! Sometimes it’s easier to invert the original condition.

— In this case, we changed “continue if v0 < 0” to “skip if v0 >= 0”.

— This saves a few instructions in the resulting assembly code.

Translating an if-then statement

17

What does this code do?

 label: sub $a0, $a0, 1

 bne $a0, $zero, label

Loops

18

Loop: j Loop!! # goto Loop

 for (i = 0; i < 4; i++) {

! // stuff

 }

 add $t0, $zero, $zero # i is initialized to 0, $t0 = 0

Loop: // stuff

 addi $t0, $t0, 1 # i ++

 slti $t1, $t0, 4 # $t1 = 1 if i < 4

 bne $t1, $zero, Loop # go to Loop if i < 4

.text
main:

 li $a0, 0x1234 ## input = 0x1234
 li $t0, 0 ## int count = 0;
 li $t1, 0 ## for (int i = 0

main_loop:
 bge $t1, 32, main_exit ## exit loop if i >= 32

 andi $t2, $a0, 1 ## bit = input & 1
 beq $t2, $0, main_skip ## skip if bit == 0

 addi $t0, $t0, 1 ## count ++

main_skip:
 srl $a0, $a0, 1 ## input = input >> 1
 add $t1, $t1, 1 ## i ++

 j main_loop

main_exit:
 jr $ra

19

! Let’s write a program to count how many bits are set in a 32-bit word.

Control-flow Example

int count = 0;
for (int i = 0 ; i < 32 ; i ++) {
 int bit = input & 1;
 if (bit != 0) {
 count ++;
 }
 input = input >> 1;
}

20

Translating an if-then-else statements

! If there is an else clause, it is the target of the conditional branch

— And the then clause needs a jump over the else clause

 // increase the magnitude of v0 by one
 if (v0 < 0) bge $v0, $0, E
 v0 --; sub $v0, $v0, 1
 j L
 else
 v0 ++; E: add $v0, $v0, 1
 v1 = v0; L: move $v1, $v0

— Drawing the control-flow graph can help you out.

21

Case/Switch Statement

! Many high-level languages support multi-way branches, e.g.

 switch (two_bits) {
 case 0: break;
 case 1: /* fall through */
 case 2: count ++; break;
 case 3: count += 2; break;
 }

! We could just translate the code to if, thens, and elses:

 if ((two_bits == 1) || (two_bits == 2)) {
 count ++;
 } else if (two_bits == 3) {
 count += 2;
 }

! This isn’t very efficient if there are many, many cases.

22

Case/Switch Statement

 switch (two_bits) {
 case 0: break;
 case 1: /* fall through */
 case 2: count ++; break;
 case 3: count += 2; break;
 }

! Alternatively, we can:

1. Create an array of jump targets

2. Load the entry indexed by the variable two_bits

3. Jump to that address using the jump register, or jr, instruction

! This is much easier to show than to tell.

