
November 9, 2007 1

Block replacement

 Any empty block in the correct set may be used for storing data.
 If there are no empty blocks, the cache controller will attempt to replace

the least recently used block, just like before.
 For highly associative caches, it’s expensive to keep track of what’s

really the least recently used block, so some approximations are used.
We won’t get into the details.

0
1
2
3
4
5
6
7

 Set

0

1

2

3

 Set

0

1

 Set

1-way associativity
8 sets, 1 block each

2-way associativity
4 sets, 2 blocks each

4-way associativity
2 sets, 4 blocks each

November 9, 2007 2

LRU example

 Assume a fully-associative cache with two blocks, which of the following
memory references miss in the cache.
— assume distinct addresses go to distinct blocks

LRUTags

A

B

A

C

B

A

B

addresses
-- -- 0

0 1

November 9, 2007 3

LRU example

 Assume a fully-associative cache with two blocks, which of the following
memory references miss in the cache.
— assume distinct addresses go to distinct blocks

LRUTags

A

B

A

C

B

A

B

addresses
-- -- 0

0 1

A -- 1

A B 0

A B 1

A C 0

B C 1

B A 0

B A 1

miss

miss

miss

miss

miss

On a miss, we
replace the LRU.

On a hit, we just
update the LRU.

November 9, 2007 4

Set associative caches are a general idea

 By now you may have noticed the 1-way set associative cache is the same
as a direct-mapped cache.

 Similarly, if a cache has 2k blocks, a 2k-way set associative cache would
be the same as a fully-associative cache.

0
1
2
3
4
5
6
7

 Set

0

1

2

3

 Set

0

1

 Set

1-way
8 sets,

1 block each

2-way
4 sets,

2 blocks each

4-way
2 sets,

4 blocks each

0

 Set

8-way
1 set,

8 blocks

direct mapped fully associative

November 9, 2007 5

2-way set associative cache implementation

0
...
2k

Index Tag DataValid

Address (m bits)

=

Hit

k(m-k-n)

Tag

 2-to-1 mux

Data

2n

TagValid Data

2n

2n

=

Index Block
offset

 How does an implementation of a
2-way cache compare with that of
a fully-associative cache?

 Only two comparators are
needed.

 The cache tags are a little
shorter too.

November 9, 2007 6

Summary

 Larger block sizes can take advantage of spatial locality by loading data
from not just one address, but also nearby addresses, into the cache.

 Associative caches assign each memory address to a particular set within
the cache, but not to any specific block within that set.
— Set sizes range from 1 (direct-mapped) to 2k (fully associative).
— Larger sets and higher associativity lead to fewer cache conflicts and

lower miss rates, but they also increase the hardware cost.
— In practice, 2-way through 16-way set-associative caches strike a good

balance between lower miss rates and higher costs.
 Next, we’ll talk more about measuring cache performance, and also

discuss the issue of writing data to a cache.

November 9, 2007 7

Cache Writing & Performance

 We’ll now cover:
— Writing to caches: keeping memory consistent & write-allocation.
— We’ll try to quantify the benefits of different cache designs, and see

how caches affect overall performance.
— We’ll also investigate some main memory organizations that can help

increase memory system performance.
 Next, we’ll talk about Virtual Memory, where memory is treated like a

cache of the disk.

November 9, 2007 8

Four important questions

1. When we copy a block of data from main memory to
the cache, where exactly should we put it?

2. How can we tell if a word is already in the cache, or if
it has to be fetched from main memory first?

3. Eventually, the small cache memory might fill up. To
load a new block from main RAM, we’d have to replace
one of the existing blocks in the cache... which one?

4. How can write operations be handled by the memory
system?

 Previous lectures answered the first 3. Today, we consider the 4th.

November 9, 2007 9

Writing to a cache

 Writing to a cache raises several additional issues.
 First, let’s assume that the address we want to write to is already loaded

in the cache. We’ll assume a simple direct-mapped cache.

 If we write a new value to that address, we can store the new data in the
cache, and avoid an expensive main memory access.

Index Tag DataV Address

...

110

...

1 11010 42803

Data

 42803

...

1101 0110

...

Index Tag DataV Address

...

110

...

1 11010 21763

Data

 42803

...

1101 0110

...

Mem[214] = 21763

November 9, 2007 10

Inconsistent memory

 But now the cache and memory contain different, inconsistent data!
 How can we ensure that subsequent loads will return the right value?
 This is also problematic if other devices are sharing the main memory, as

in a multiprocessor system.

Index Tag DataV Address

...

110

...

1 11010 21763

Data

42803

...

1101 0110

...

November 9, 2007 11

Write-through caches

 A write-through cache solves the inconsistency problem by forcing all
writes to update both the cache and the main memory.

 This is simple to implement and keeps the cache and memory consistent.
 Why is this not so good?

Index Tag DataV Address

...

110

...

1 11010 21763

Data

21763

...

1101 0110

...

Mem[214] = 21763

November 9, 2007 12

Write-through caches

 A write-through cache solves the inconsistency problem by forcing all
writes to update both the cache and the main memory.

 This is simple to implement and keeps the cache and memory consistent.
 The bad thing is that forcing every write to go to main memory, we use

up bandwidth between the cache and the memory.

Index Tag DataV Address

...

110

...

1 11010 21763

Data

21763

...

1101 0110

...

Mem[214] = 21763

November 9, 2007 13

Write buffers

 Write-through caches can result in slow writes, so processors typically
include a write buffer, which queues pending writes to main memory and
permits the CPU to continue.

 Buffers are commonly used when two devices run at different speeds.
— If a producer generates data too quickly for a consumer to handle, the

extra data is stored in a buffer and the producer can continue on with
other tasks, without waiting for the consumer.

— Conversely, if the producer slows down, the consumer can continue
running at full speed as long as there is excess data in the buffer.

 For us, the producer is the CPU and the consumer is the main memory.

BufferProducer Consumer

November 9, 2007 14

Write-back caches

 In a write-back cache, the memory is not updated until the cache block
needs to be replaced (e.g., when loading data into a full cache set).

 For example, we might write some data to the cache at first, leaving it
inconsistent with the main memory as shown before.
— The cache block is marked “dirty” to indicate this inconsistency

 Subsequent reads to the same memory address will be serviced by the
cache, which contains the correct, updated data.

Index Tag DataDirty Address

...

110

...

1 11010 21763

Data

 42803

1000 1110

1101 0110

...

Mem[214] = 21763

1225

V

1

November 9, 2007 15

Finishing the write back

 We don’t need to store the new value back to main memory unless the
cache block gets replaced.

 For example, on a read from Mem[142], which maps to the same cache
block, the modified cache contents will first be written to main memory.

 Only then can the cache block be replaced with data from address 142.

Index Tag Data

...

110

...

10001 1225

Address Data

21763

1000 1110

1101 0110

...

1225

Index Tag Data

...

110

...

Dirty

0

Dirty

1 11010 21763

Address Data

21763

1000 1110

1101 0110

...

1225

V

1

V

1

November 9, 2007 16

Write-back cache discussion

 The advantage of write-back caches is that not all write operations need
to access main memory, as with write-through caches.
— If a single address is frequently written to, then it doesn’t pay to keep

writing that data through to main memory.
— If several bytes within the same cache block are modified, they will

only force one memory write operation at write-back time.

November 9, 2007 17

Write-back cache discussion

 Each block in a write-back cache needs a dirty bit to indicate whether or
not it must be saved to main memory before being replaced—otherwise
we might perform unnecessary writebacks.

 Notice the penalty for the main memory access will not be applied until
the execution of some subsequent instruction following the write.
— In our example, the write to Mem[214] affected only the cache.
— But the load from Mem[142] resulted in two memory accesses: one to

save data to address 214, and one to load data from address 142.
• The write can be “buffered” as was shown in write-through.

 The advantage of write-back caches is that not all write operations need
to access main memory, as with write-through caches.
— If a single address is frequently written to, then it doesn’t pay to keep

writing that data through to main memory.
— If several bytes within the same cache block are modified, they will

only force one memory write operation at write-back time.

November 9, 2007 18

Write misses

 A second scenario is if we try to write to an address that is not already
contained in the cache; this is called a write miss.

 Let’s say we want to store 21763 into Mem[1101 0110] but we find that
address is not currently in the cache.

 When we update Mem[1101 0110], should we also load it into the cache?

Index Tag DataV Address

...

110

...

1 00010 123456

Data

6378

...

1101 0110

...

November 9, 2007 19

 With a write around policy, the write operation goes directly to main
memory without affecting the cache.

Write around caches (a.k.a. write-no-allocate)

Index Tag DataV

...

110

...

1 00010 123456

Address Data

21763

...

1101 0110

...

Mem[214] = 21763

November 9, 2007 20

 With a write around policy, the write operation goes directly to main
memory without affecting the cache.

 This is good when data is written but not immediately used again, in
which case there’s no point to load it into the cache yet.

for (int i = 0; i < SIZE; i++)
a[i] = i;

Write around caches (a.k.a. write-no-allocate)

Index Tag DataV

...

110

...

1 00010 123456

Address Data

21763

...

1101 0110

...

Mem[214] = 21763

November 9, 2007 21

Allocate on write

 An allocate on write strategy would instead load the newly written data
into the cache.

 If that data is needed again soon, it will be available in the cache.

Index Tag DataV Address

...

110

...

1 11010 21763

Data

21763

...

1101 0110

...

Mem[214] = 21763

November 9, 2007 22

Which is it?

 Given the following trace of accesses, can you determine whether the
cache is write-allocate or write-no-allocate?
— Assume A and B are distinct, and can be in the cache simultaneously.

Load A

Store B

Store A

Load A

Load B

Load B

Load A

Miss

Miss

Miss

Hit

Hit

Hit

Hit

November 9, 2007 23

Which is it?

 Given the following trace of accesses, can you determine whether the
cache is write-allocate or write-no-allocate?
— Assume A and B are distinct, and can be in the cache simultaneously.

Load A

Store B

Store A

Load A

Load B

Load B

Load A

Miss

Miss

Miss

Hit

Hit

Hit

Hit
On a write-
allocate cache this
would be a hit

Answer: Write-no-allocate

November 9, 2007 24

First Observations

 Split Instruction/Data caches:
— Pro: No structural hazard between IF & MEM stages

• A single-ported unified cache stalls fetch during load or store
— Con: Static partitioning of cache between instructions & data

• Bad if working sets unequal: e.g., code/DATA or CODE/data

 Cache Hierarchies:
— Trade-off between access time & hit rate

• L1 cache can focus on fast access time (okay hit rate)
• L2 cache can focus on good hit rate (okay access time)

— Such hierarchical design is another “big idea”
— We’ll see this in section.

L1 cacheCPU Main
Memory

L2 cache

November 9, 2007 25

Opteron Vital Statistics

 L1 Caches: Instruction & Data
— 64 kB
— 64 byte blocks
— 2-way set associative
— 2 cycle access time

 L2 Cache:
— 1 MB
— 64 byte blocks
— 4-way set associative
— 16 cycle access time (total, not just miss penalty)

 Memory
— 200+ cycle access time

L1 cacheCPU Main
Memory

L2 cache

November 9, 2007 26

Comparing cache organizations

 Like many architectural features, caches are evaluated experimentally.
— As always, performance depends on the actual instruction mix, since

different programs will have different memory access patterns.
— Simulating or executing real applications is the most accurate way to

measure performance characteristics.
 The graphs on the next few slides illustrate the simulated miss rates for

several different cache designs.
— Again lower miss rates are generally better, but remember that the

miss rate is just one component of average memory access time and
execution time.

— You’ll probably do some cache simulations if you take CS433.

November 9, 2007 27

Associativity tradeoffs and miss rates

 As we saw last time, higher associativity means more complex hardware.
 But a highly-associative cache will also exhibit a lower miss rate.

— Each set has more blocks, so there’s less chance of a conflict between
two addresses which both belong in the same set.

— Overall, this will reduce AMAT and memory stall cycles.
 The textbook shows the miss rates decreasing as the associativity

increases.

0%

3%

6%

9%

12%

Eight-wayFour-wayTwo-wayOne-way

M
is

s
ra

te

Associativity

November 9, 2007 28

Cache size and miss rates

 The cache size also has a significant impact on performance.
— The larger a cache is, the less chance there will be of a conflict.
— Again this means the miss rate decreases, so the AMAT and number of

memory stall cycles also decrease.
 The complete Figure 7.29 depicts the miss rate as a function of both the

cache size and its associativity.

0%

3%

6%

9%

12%

15%

Eight-wayFour-wayTwo-wayOne-way

1 KB
2 KB
4 KB
8 KB

M
is

s
ra

te

Associativity

November 9, 2007 29

Block size and miss rates

 Finally, Figure 7.12 on p. 559 shows miss rates relative to the block size
and overall cache size.
— Smaller blocks do not take maximum advantage of spatial locality.

1 KB

8 KB

16 KB

64 KB

256

40%

35%

30%

25%

20%

15%

10%

5%

0%

M
is

s
ra

te

64164

Block size (bytes)

November 9, 2007 30

Block size and miss rates

 Finally, Figure 7.12 on p. 559 shows miss rates relative to the block size
and overall cache size.
— Smaller blocks do not take maximum advantage of spatial locality.
— But if blocks are too large, there will be fewer blocks available, and

more potential misses due to conflicts.

1 KB

8 KB

16 KB

64 KB

256

40%

35%

30%

25%

20%

15%

10%

5%

0%

M
is

s
ra

te

64164

Block size (bytes)

November 9, 2007 31

Memory and overall performance

 How do cache hits and misses affect overall system performance?
— Assuming a hit time of one CPU clock cycle, program execution will

continue normally on a cache hit. (Our earlier computations always
assumed one clock cycle for an instruction fetch or data access.)

— For cache misses, we’ll assume the CPU must stall to wait for a load
from main memory.

 The total number of stall cycles depends on the number of cache misses
and the miss penalty.

Memory stall cycles = Memory accesses x miss rate x miss penalty

 To include stalls due to cache misses in CPU performance equations, we
have to add them to the “base” number of execution cycles.

CPU time = (CPU execution cycles + Memory stall cycles) x Cycle time

November 9, 2007 32

Performance example

 Assume that 33% of the instructions in a program are data accesses. The
cache hit ratio is 97% and the hit time is one cycle, but the miss penalty
is 20 cycles.

Memory stall cycles = Memory accesses x Miss rate x Miss penalty
= 0.33 I x 0.03 x 20 cycles
= 0.2 I cycles

 If I instructions are executed, then the number of wasted cycles will be
0.2 x I.

This code is 1.2 times slower than a program with a “perfect” CPI of 1!

November 9, 2007 33

Memory systems are a bottleneck

CPU time = (CPU execution cycles + Memory stall cycles) x Cycle time

 Processor performance traditionally outpaces memory performance, so
the memory system is often the system bottleneck.

 For example, with a base CPI of 1, the CPU time from the last page is:

CPU time = (I + 0.2 I) x Cycle time

 What if we could double the CPU performance so the CPI becomes 0.5,
but memory performance remained the same?

CPU time = (0.5 I + 0.2 I) x Cycle time

 The overall CPU time improves by just 1.2/0.7 = 1.7 times!
 Refer back to Amdahl’s Law from textbook page 101.

— Speeding up only part of a system has diminishing returns.

November 9, 2007 34

Basic main memory design

 There are some ways the main memory can be organized to reduce miss
penalties and help with caching.

 For some concrete examples, let’s assume the following
three steps are taken when a cache needs to load data
from the main memory.

1. It takes 1 cycle to send an address to the RAM.
2. There is a 15-cycle latency for each RAM access.
3. It takes 1 cycle to return data from the RAM.

 In the setup shown here, the buses from the CPU to the
cache and from the cache to RAM are all one word wide.

 If the cache has one-word blocks, then filling a block
from RAM (i.e., the miss penalty) would take 17 cycles.

1 + 15 + 1 = 17 clock cycles

 The cache controller has to send the desired address to
the RAM, wait and receive the data.

Main
Memory

Cache

CPU

November 9, 2007 35

Miss penalties for larger cache blocks

 If the cache has four-word blocks, then loading a single block would need
four individual main memory accesses, and a miss penalty of 68 cycles!

4 x (1 + 15 + 1) = 68 clock cycles

Main
Memory

CPU

Cache

November 9, 2007 36

A wider memory

 A simple way to decrease the miss
penalty is to widen the memory and
its interface to the cache, so we
can read multiple words from RAM
in one shot.

 If we could read four words from
the memory at once, a four-word
cache load would need just 17
cycles.

1 + 15 + 1 = 17 cycles

 The disadvantage is the cost of the
wider buses—each additional bit of
memory width requires another
connection to the cache.

Main
Memory

Cache

CPU

November 9, 2007 37

An interleaved memory

 Another approach is to interleave
the memory, or split it into “banks”
that can be accessed individually.

 The main benefit is overlapping the
latencies of accessing each word.

 For example, if our main memory
has four banks, each one byte wide,
then we could load four bytes into
a cache block in just 20 cycles.

1 + 15 + (4 x 1) = 20 cycles

 Our buses are still one byte wide
here, so four cycles are needed to
transfer data to the caches.

 This is cheaper than implementing
a four-byte bus, but not too much
slower.

Main Memory

CPU

Bank 0 Bank 1 Bank 2 Bank 3

Cache

November 9, 2007 38

 Here is a diagram to show how the memory accesses can be interleaved.
— The magenta cycles represent sending an address to a memory bank.
— Each memory bank has a 15-cycle latency, and it takes another cycle

(shown in blue) to return data from the memory.
 This is the same basic idea as pipelining!

— As soon as we request data from one memory bank, we can go ahead
and request data from another bank as well.

— Each individual load takes 17 clock cycles, but four overlapped loads
require just 20 cycles.

Interleaved memory accesses

Load word 1
Load word 2
Load word 3
Load word 4

Clock cycles
15 cycles

November 9, 2007 39

Which is better?

 Increasing block size can improve hit rate (due to spatial locality), but
transfer time increases. Which cache configuration would be better?

 Assume both caches have single cycle hit times. Memory accesses take
15 cycles, and the memory bus is 8-bytes wide:
— i.e., an 16-byte memory access takes 18 cycles:

1 (send address) + 15 (memory access) + 2 (two 8-byte transfers)

recall: AMAT = Hit time + (Miss rate x Miss penalty)

Miss rate

Block size

4%5%

64-bytes32-bytes

Cache #2Cache #1

November 9, 2007 40

Which is better?

 Increasing block size can improve hit rate (due to spatial locality), but
transfer time increases. Which cache configuration would be better?

 Assume both caches have single cycle hit times. Memory accesses take
15 cycles, and the memory bus is 8-bytes wide:
— i.e., an 16-byte memory access takes 18 cycles:

1 (send address) + 15 (memory access) + 2 (two 8-byte transfers)

recall: AMAT = Hit time + (Miss rate x Miss penalty)

Miss rate

Block size

4%5%

64-bytes32-bytes

Cache #2Cache #1

Cache #1:
Miss Penalty = 1 + 15 + 32B/8B = 20 cycles

AMAT = 1 + (.05 * 20) = 2
Cache #2:

Miss Penalty = 1 + 15 + 64B/8B = 24 cycles
AMAT = 1 + (.04 * 24) = ~1.96

November 9, 2007 41

Summary

 Writing to a cache poses a couple of interesting issues.
— Write-through and write-back policies keep the cache consistent with

main memory in different ways for write hits.
— Write-around and allocate-on-write are two strategies to handle write

misses, differing in whether updated data is loaded into the cache.
 Memory system performance depends upon the cache hit time, miss rate

and miss penalty, as well as the actual program being executed.
— We can use these numbers to find the average memory access time.
— We can also revise our CPU time formula to include stall cycles.

AMAT = Hit time + (Miss rate x Miss penalty)

Memory stall cycles = Memory accesses x miss rate x miss penalty

CPU time = (CPU execution cycles + Memory stall cycles) x Cycle time

 The organization of a memory system affects its performance.
— The cache size, block size, and associativity affect the miss rate.
— We can organize the main memory to help reduce miss penalties. For

example, interleaved memory supports pipelined data accesses.

