Today

- Part 1: Course Mechanics

- Part 2: Course Overview
Mechanics: Course Goals / Orientation

- For 97% of us, computer architecture is “hardware”
 - It’s what’s above CSE 370 and below CSE 451
- One focus of CSE 378 is how this software is organized, and how to make it fast
- We’re also going to be interested in the “hardware/software interface”
 - What does a compiler do?
 - What does an OS do?
 - What support does the hardware provide?

Mechanics: Prerequisites

- CSE 370
 - Binary / hex integers
 - Basic machine organization: memory, registers, ALU, control, clock-cycle
 - (378 is logical organization, not logic / physical characteristics)
- Programming
 - Java – not so much Java programming, as running Java programs
 - javac, java, classpath, jar, an editor
 - C – we’ll be using C--, a C subset, but we won’t be doing much programming in it.
 - Unix – we’ll be using a Unix shell (cygwin, at least) in very modest ways. (We’ll also be using Windows.)
Mechanics: Homework

- Some problems from the book
- The majority of the work will be building a working machine
 - Three incremental projects
 - Working in pairs if you like
 - Dividing the workload isn’t easy
 - The final result will be a working processor that runs an operating system and a simple shell (plus applications)
- The challenge is mastering breadth (rather than depth)

Mechanics: Exams

- Two midterms
 - Wednesday, January 25
 - Friday, February 24 (subject to change)
- One final
 - Wednesday, March 15 (8:30-10:20)
Mechanics: Grading

- 45% homeworks
- 10% first midterm
- 15% second midterm
- 25% final (covers entire quarter)
- 5% other

Mechanics: Late Policy

- Assignments due beginning of lecture on due date
 - Mostly electronic turn-in
 - *We could be very rigid about the exact turn-in time…*
- 20% / day late penalty
- 2 free extension days (at your discretion)
 - Make sure to clearly notify the TA
Mechanics: Academic Misconduct

- “In general, any activity you engage in for the purpose of earning credit while avoiding learning, or to help others do so, is likely to be an act of Academic Misconduct.”

- Different people learn best in different ways.

- It’s never cheating to interact with course staff.

Mechanics: Interacting with Live Course Staff

- Lectures
 - Speaking up is good (for everyone, but especially me).

- Sections
 - Oriented towards clarifying issues with lectures / homeworks, rather than providing additional information.

- Office hours:
 - Me: Tuesdays, 2:00-3:00 (Sieg 534), by appointment, whenever
 - Lucas: TBD
Mechanics: Interacting with Course Staff

- **E-mail**

- **Anonymous feedback**
 - Link off course home page to provide it
 - Go faster / go slower
 - Can we have an extension?
 - More / less homework
 - Link off course home page to read it
 - All submitted anonymous feedback that has “permission to post publicly” checked, minus anything libelous

- **Course wiki**
 - User-editable web

- **Class mailing list**
 - Your @cs.washington.edu account is already enrolled
 - Mostly one-way communication

Brief Intermission

((More) Questions?)
What is “Computer Architecture”?

Computer Architecture =

- Instruction Set Architecture (ISA) +
- Machine Organization + …

The Instruction Set: a Critical Interface

Lesson from history:
Push complex functionality into software –
it’s more flexible, and it ends up being faster.
What is “Computer Architecture”?

"... the attributes of a [computing] system as seen by the programmer, i.e., the conceptual structure and functional behavior, as distinct from the organization of the data flows and controls the logic design, and the physical implementation."

– Amdahl, Blaaw, and Brooks, 1964

Instruction Set Architecture
(subset of Computer Architecture)

- Organization of Programmable Storage
- Data Types & Data Structures: Encodings & Representations
- Instruction Set
- Instruction Formats
- Modes of Addressing and Accessing Data Items and Instructions
- Exceptional Conditions
Levels of Representation

High Level Language Program
 Compiler
Assembly Language Program
 Assembler
Machine Language Program
 Loader
Program in Memory
 Machine Interpretation
 temp = v[k];
 v[k] = v[k+1];
 v[k+1] = temp;
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)
0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1010 1111 0101 1000 0000
ALUOP[0:3] <= InstReg[9:11] & MASK

Machine Organization

- Since 1946 all computers have had 5 components

Processor
 Control
 Datapath
Memory
Input
Output
Basic Execution Cycle

- **Instruction Fetch**
- **Instruction Decode**
- **Operand Fetch**
- **Execute**
- **Result Store**
- **Next Instruction**

- Obtain instruction from program storage
- Determine required actions and instruction size
- Locate and obtain operand data
- Compute result value or status
- Deposit results in storage for later use
- Determine successor instruction

A Machine (is not just a CPU)

Pentium III Chipset

Proc

Caches

Memory

Busses

adapters

Controllers

I/O Devices:

- Disks
- Displays
- Keyboards

Networks
Where are We Going?

Single/multicycle Datapaths

Pipelining

Memory Systems

ISA

A Bit of History
(And What is Moore’s Law?)
ENIAC: 1946

- Cost to build: **$486,804.22**
- 17,468 vacuum tubes, 5,000 additions/second (5 Kips)
- 30 feet x 50 feet, 30 tons
- Cost to operate (electricity): $650/hr. (idling)

ENIAC Programming
IBM S360/67: 1967

Cost: $3,000,000
1,000,000 instructions/sec. (1 Mip)
512KB “core” memory ($1,000,000/MB)
352MB disk

X 11/780: circa 1980

Cost: $150,000
1 “VAX Mip”
1MB Ram
Xerox Alto: 1973

- Cost: $32,000 (research)
- 1 Mip
- Bitmap display
- Mouse
- “Microsoft Word”

Intel 8086 (x86): 1978

- Cost: ~$350
- 5-10 MHz (~1Mip)
- 29,000 transistors
8/12/1981 IBM introduces its Personal Computer, which uses Microsoft’s 16-bit operating system, Microsoft® MS-DOS® version 1.0, plus Microsoft BASIC, Microsoft COBOL, Microsoft Pascal, and other Microsoft products.

1984: Original Mac
Cost: $3,500
8 MHz
64KB RAM
No disk (400KB floppy)

Pentium 4: 2000’s
Cost: $100’s
2 GHz
42,000,000 transistors
Moore’s Law: 1975

One Way to View Architecture as a Topic

What are we going to do with all those transistors?

or

How can we make programs run faster at the rate processor speeds are improving?
A Remark About the Weight of History

A computing system is more than just hardware – there is an enormous base of software required (e.g., OS, compilers, applications).

Architectures tend to undergo evolution, rather than revolution, since backward compatibility is required to gain adoption.

On the other hand, the machine organization (implementation of the ISA) is free to change as dramatically as the designer thinks is beneficial.