

cse378 HW 1 Answer Set

General Comments

Notes
• Question / Comments about scores see me.
• √ (check) == correct
• (--number) == minus the number written
• Many of you did very well, but many papers will full of what were

most likely “silly little” mistakes. However, in assembly, little
differences can make a huge difference, so attention to detail is a
necessity and it is hard as a grader to sort out an error in
understanding from a simple typo.

Hopefully, in any event, this assignment has not only expanded your
understanding of assembly, but also why we don’t tend to use it
directly.

Question 1: Copy $8’s value into $9
Value: 1 point

Answer Notes / Common Mistakes
 add $9, $8, $0
OR
 addi $9, $8, 0

• Be sure to use the proper destination
register

Question 2: Put 0x12348ABC into $9
Value: 2 points

Answer Notes / Common Mistakes
 lui $9,0x1234
 ori $9,$8,0x8ABC
OR
 addi $9,$0,0x1234
 sll $9,$9,16
 ori $9,$9,0x8ABC

• addiu sign extends just like addi (this leads
to problems since 0x8ABC has a leading 1)

• lui sets all 32 bits it just fills the lower bits
with 0s, either way the destination register
is completely written over.

• I-type instruction only have 16 bits in their
immediate field so addi
$9,$0,0x12348ABC will not work.

• sll takes the number of bits to be shifted
left. Many of you told it to shift 4, which is
the number of hex characters, each of
which corresponds to 4 bits.

Question 3: Place the 2’s complement of $8 (ie -1*$8), into $9
Value: 2 points

Answer Notes / Common Mistakes
 #multiply by negative 1
 multiu $9,$8,-1
OR
 #invert and add 1
 nor $9,$8,$0
 addiu $9,$9,1
OR
 #subtract from $0
 subu $9,$0,$8

• addi can cause overflow (ie if $8 ==
0x00)

• Don’t forget that we have the
unsigned operators for this purpose.
There is no need to branch.

Question 4: $8 holds the address of the 0th byte of an array of bytes. $9 hold
an index n. Write the value 0x00 to $8[n]. (You can use $10 as a temporary)
Value: 2 points

Answer Notes / Common Mistakes
 addu $10,$9,$8
 sb $0,0($10)

• Really aught to use addu since was
are dealling with memory. (not
penalized this time)

• Since it is an array of bytes there is
no need to multiply the index n by
anything.

• Be sure to only write a single byte
to memory. Using shw or sw will
overwrite values in the array, and
depending on the value of n, may
not even be legal since the data may
not be alligned.

• Addresses are byte addressable. I
saw a lot of people multiply by 8 to
get the “right” size. A byte is 8
bits, but there is only one address
per byte.

• There is no need to load before a
store unless you are somehow
manipulating the origional value.

• addi is only for when you have an
immediate constant value. Don’t
use for register + register.

• The format sb $val $index($base)
does not exist. You can only use a
constant offset.

Question 5: $8 holds the address of the 0th element of an array of 32-bit
integers. Set the 4th element of the array (index 3) to 0.
Value: 2 points

Answer Notes / Common Mistakes
 sw $0,12($8) • Offset by 12 bytes because we

offset by 3 ints and there are 4 bytes
in an int:
offset_in_bytes = index * size of
elements in bytes.
 offset = 3 * 4 == 12.

• There is no need to add 12 to $8,
the store format alows you to do
this as part of the instruction.

Question 6: $8 holds the address of the 0th byte of an array of 32 bit
integers. $9 holds a signed integer index, which we’ll call n. Set the nth
element of the array pointed at by $8 to 0x01. Use as few additional
registers as possible.
Value: 2 points

Answer Notes / Common Mistakes
 sll $10,$9,0x02
 addu $10,$10,$8
 addi $11,$0,0x01
 sw $11,0($10)

• Make sure the number you multiply
by is the number of bytes in an int.

Question 7: Swap $8 and $9 using no other registers
Value: 1 point

Answer Notes / Common Mistakes
 #$8 == a, $9 == b
 xor $8,$8,$9
 #$8 == (a ^ b), $9 == b
 xor $9,$8,$9
 #$8 == (a ^ b)
 #$9 == b ^ (a ^ b)
 # == a
 xor $8,$8,$9
 #$8 == (a ^ b) ^ a
 #$8 == b
 #$9 == a

• Many people used addition for this
not realizing that in certain
circumstances (ie very small or very
large numbers) this will lead to
incorrect values.

• Others used nor which the
construction of a truth table will
show also does not work.

• Finally, writing to an arbitrary
location in memory is not in the
spirit of the problem, nor is it
practicle since you don’t know what
it is you are potentially writing
over.

Question 8: Place $8 + $8 - $8 in $8.
Value: 2 points

Answer Notes / Common Mistakes
 #want to allow the op
 #to trigger overflow
 add $9,$8,$8
 sub $8,$9,$8
OR
 #don’t want to ever
 #trigger overflow
 #-do nothing-

• The key point here is that the only
difference between performing the
operation and ignoring it is what
happens in the case of overflow. If
you want to ignore that case then no
operations whould be used, if you
want to acknowledge it then you
should use op types which generate
overflow.

Question 9: $8 and $9 contain signed integers. Put the larger of the two in $10.
Value: 2 points

Answer Notes / Common Mistakes
 slt $10,$8,$9
 bne $10,$0,eightBig
 add $10,$0,$9
 j finish
eightBig: add $10,$0,$8
finish:

• The op blt (branch less than) does
not exist. (What does exist is
branch less than 0 btlz).

Question 10 on next Page.

Question 10: Assign to $9 the number of bits in $8 which are 1.
Value: 3 points

Answer Notes / Common Mistakes
CODE:
 andi $9,$8,0x01
 srl $10,$8,0x01
loop: andi $11,$10,0x01
 add $9,$9,$11
 srl $10,$10,0x01
 bgtz $10,loop

CODE WITH EXPLANATION:
#assign $9 = the 0th bit of $8
 andi $9,$8,0x01
#shift $8 one bit to the right
#(logical) and place the result in
#$10 so we have a copy to work with
 srl $10,$8,0x01
#now we get to the main body of the
#loop. We don’t have to check if
#we are done the first time so we
#can set it up as a do{…}while()
#loop.

#first we place the next bit in $11
loop:andi $11,$10,0x01
#then, we add it to the running sum
 add $9,$9,$11
#then we shift $10 over so as to
#examine the next bit on the next
#iteration
 srl $10,$10,0x01
#then we check to see if $10 is
#greater than zero. This works
#since if it equals zero then there
#are no 1s left to count and it
#won’t be less than zero since we
#shifted right at least once
#(logical NOT arithmetic) before
the test.
 bgtz $10,loop
#when it falls through $9 has the
#answer.

• Assembly is REALLY
hard to read. Do me a
favor and comment your
code, or at the very least
explain what is going on.

• Some of you simply used
the computer to count to
32, the question was how
many of the 32 bits in $8
are already a 1.

Machine Language: Give the machine code for:
 1| add $8, $8, $12
 2|loop: addi $8, $8, 12
 3| lw $9, -4($8)
 4| bne $9, $0, skip
 5| sub $8, $8, $9
 6|skip: j loop

(assume that the first instruction resides at 0x00010000)
Value: 3 points

Answer Notes /
Common Mistakes

First in binary

line op rs rt rd,0s,func / imm.
1 000000 01000 01100 01000 00000 100000
2 001000 01000 01000 0000000000001100
3 100011 01000 01001 1111111111111100
4 000101 01001 00000 0000000000000001
5 000000 01000 01001 01000 00000 100010
6 000010 00000000000100000000000001

Final Answer

MEM HEX
0x00010000 0x010C4020
0x00010004 0x2108000C
0x00010008 0x8D09FFFC
0x0001000C 0x15200001
0x00010010 0x01094022
0x00010014 0x08000401

*The order of the
registers in the
instruction format is
not the same as the
order when written in
assembly
*branch instruction are
a relative offset from
the next instruction
*recall that the jump
instruction does not
include the bottom two
bits of the PC since
they are always zero.

