
378 MIDTERM

Spring 2006

Name: —————————————————–

Q1 (10pts): ——————————–

Q2 (10pts): ——————————–

Q3 (10pts): ——————————–

Q4 (10pts): ——————————–

Q5 (20pts): ——————————–

Q6 (20pts): ——————————–

Q7 (20pts): ——————————–

Total (out of 100): ——————-

1

Question 1 (10 points): Write a program that computes t0×t1 and leaves
the result in register t2. You can use only the following instructions: addi, add,
sub, sll, srl, nand, beq. Do not worry about efficiency or following MIPS
calling conventions. Assume that before your program runs t0 and t1 contain
the values you need to multiply. Furthermore, you can assume that both t0 and
t1 are positive integers. Do not worry about overflow.

2

Question 2 (10 points): Write a program that computes t0 × t1 and
leaves the result in register t2. You can use only the following instructions:
add, sub, sll, srl, nand, beq. Do not worry about efficiency or following
MIPS calling conventions. Assume that before your program runs t0 and t1
contain the values you need to multiply. Furthermore, you can assume that
both t0 and t1 are positive integers. Do not worry about overflow. (Note this
question is different than question 1).

3

Question 3 (10 points): Write a program that computes t0 × t1 and
leaves the result in register t2. You can use only the following instructions:
add, sll, srl, nand, beq. Do not worry about efficiency or following MIPS
calling conventions. Assume that before your program runs t0 and t1 contain
the values you need to multiply. Furthermore, you can assume that both t0 and
t1 are positive integers. Do not worry about overflow. (Note this question is
different than question 2).

4

Question 4 (10 points): Write a program that computes t0 × t1 and
leaves the result in register t2. You can use only the following instructions:
add, sll, srl, nand. Do not worry about efficiency or following MIPS calling
conventions. Assume that before your program runs t0 and t1 contain the
values you need to multiply. Furthermore, you can assume that both t0 and
t1 are positive integers. Do not worry about overflow. (Note this question is
different than question 3).

5

Question 5 (20 points): Modify the following machine to support the
following new instruction: JRLZ. It stands for Jump-to-register if less than
zero. The instruction is used in assembly like (as an example):

jrlz $t0, $t1

The result of the instruction is to cause the machine to branch to the address
specified in $t0 if $t1 is less than zero.

PAT05F01.eps

Data

Register #

Register #

Register #

PC Address Instruction

Instruction
memory

Registers ALU Address

Data

Data
memory

AddAdd

4

6

Question 6 (20 points): The following diagram looks a lot like Lab 1,
but is subtly different. Explain how to make this processor support loads and
stores. Write the control signals required to do this and explain their operation.

PAT05F28.eps

Read
register 1

Read
register 2

Write
register

Write
data

Registers ALU
Zero

Read
data 1

Read
data 2

Sign
extend

16 32

Instruction

[31–26]
Instruction

[25–21]
Instruction

[20–16]
Instruction

[15–0]
ALU

result

M
u
x

M
u
x

Shift
left 2

Shift
left 2

Instruction
register

PC 0

1

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1
A

B 0
1
2
3

M
u
x

0

1

2

ALUOut

Instruction
[15–0]

Memory
data

register

Address

Write
data

Memory
MemData

4

Instruction
[15–11]

PCWriteCond
PCWrite

IorD
MemRead
MemWrite

MemtoReg
IRWrite

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

26 28

Outputs

Control

Op
[5–0]

ALU
control

PC [31–28]

Instruction [25-0]

Instruction [5–0]

Jump
address
[31–0]

7

Question 7 (20 points): Suppose the following instructions were fetched:
add $t1, $t3, $t4
lw $t0, 0($t1)
beq $t0, $t2, somewhere

Suppose the lw instruction is in the memory stage. Draw on the diagram
where the beq and add instructions are (which stage). Label all forwarding
networks that are being used in that clock cycle and indicate what data values
are being forwarded. It is possible you will have to modify the diagram to
support your answer and make the processor properly execute. If this is the
case, draw these modifications too.

PAT06F42.eps

0

0

0 M

WB

WB

Data
memory

Instruction
memory

M
u
x

M
u
x

M
u
x M

u
x

M
u
x

ALU

ID/EX

EX/MEM

Cause
EPC

MEM/WB

Forwarding
unit

PC

Control

EX

M

WB

IF/ID

M
u
x

M
u
x

M
u
x

Hazard
detection

unit

+

+ Shift
left 2

=

IF.Flush

ID.Flush

EX.Flush

4

Sign
extend

80000180

Registers

8

