What is the study of **Computer Architecture?** It's the study of the _____ of computers • **Structure:** static arrangement of the parts Organization: dynamic interaction of the parts and their control Implementation: design of specific building blocks Performance: behavioral study of the system or of some of its components

What is *a* Computer Architecture

• Two definitons:

- (1) Architecture is an **interface** between layers
- ISA is the interface between hardware and software
- ISA is what is visible to the programmer (and ISA might be different for O.S. and applications)
- ISA consists of:
 - instructions (operations and how they are encoded)
 - information units (size, how they are addressed etc.)
 - registers (or more generally processor state)
 - input-output control
 - Execution model

a Computer Architecture

(2) The microarchitecture (organization)

- the basic blocks of a computer system, more specifically
 - basic blocks of the CPU
 - basic blocks of the memory hierarchy
- how are the basic blocks designed, controlled, connected?
- Organization used to be transparent to the ISA.
- Today more and more of the ISA is *"exposed"* to the user/compiler.

The Babbage Machine

The Babbage Difference Engine (1832) 25,000 parts cost: £17,470

The First Transistor

The integrated circuit

1966, ECL Logic

Intel 4004

~ 1000 xtrs 1971

~ 44M xtrs 2000

Memory

Year

Illustration of Moore's Law

Power Dissipation

Evolution of Intel Microprocessor Speeds

Why have an ISA?

Computers that have the same (or very similar) ISA
 Compatibility of software between various implementations

• IBM

- 704, 709, 70xx etc.. From 1955 till 1965
- 360, 370, 43xx, 33xx From 1965 to the present
- Power PC
- DEC
 - PDP-11, VAX From 1970 till 1985
 - Alpha (now Compaq, now HP) in 1990's

More computer families

Intel

- Early micros 40xx in early 70's
- x86 (086,...,486, Pentium, Pentium Pro, Pentium 3, Pentium
 4) from 1980 on
- IA-64 (Itanium) in 2001
- SUN (Berkeley RISC)
 - Sparc, Ultra Sparc 1985 On
- MIPS-SGI (Stanford RISC)
 - Mips 2000, 3000, 4400, 10000 from 1985 on

MIPS is a RISC

RISC = Reduced Instruction Set Computer

- R could also stand for "regular"
- All arithmetic-logical instructions are of the form
- MIPS (as all RISC's) is a Load-Store architecture
 - ALU operates only on operands that are in registers
 - The only instructions accessing memory are load and store

 $R_a \leftarrow R_b op R_c$

Registers

Registers are the "*bricks*" of the CPU

- Registers are an essential part of the ISA
 - Visible to the hardware and to the programmer
- Registers are
 - Used for high speed storage for operands. For example, if variables *a,b,c* are in registers 8,9,10 respectively
 add \$8,\$9,\$10 # a = b + c
 - Easy to name (most computers have 32 registers visible to the programmer and their names are 0, 1, 2, ..., 31)
 - Used for addressing memory