Performance of computer systems

Many different factors among which:

— Technology

« Raw speed of the circuits (clock, switching time)

» Process technology (how many transistors on a chip)
— Organization

« What type of processor (e.g., RISC vs. CISC)

* What type of memory hierarchy

* What types of I/O devices

— How many processors in the system
— Software

* O.S., compilers, database drivers etc

CSE378 Performance.



Moore’s Law

transistors
100,000,000

Pontiumf 4 Proocoaod
Pentiumi Il Pracesaor @ |

MOORE'S LAW
4 4 10,000,000

1 il T ") 1,000,000

-'::i';‘f.ﬁ 8

4 RS 4 100,000
i ,’ .:': g ‘:"-\l" ¥
. .
10,000
BOOE
4004

1970 1975 1900 1986 1950 1995 200D

Courtesy Intel Corp.

CSE378 Performance.



Processor-Memory Performance Gap

* x Memory latency decrease (10x over 8 years but densities have increased
100x over the same period)

6 CPU speed (100x over 10 years)

e 0x8

1000

100

10

Pentium IV

Pentium 111 / ‘

Pentium Pro
PentiIVeT/

»

“Memory wall”

386/ “Memory gap’i

V4
X A

e

Vs Pa N

A

89 91 93 95 97 99 01

CSE378 Performance.

\4



What are some possible metrics

« Raw speed (peak performance = clock rate)

» Execution time (or response time): time to execute one
(suite of) program from beginning to end.

— Need benchmarks for integer dominated programs, scientific,
graphical interfaces, multimedia tasks, desktop apps, utilities etc.
* Throughput (total amount of work 1n a given time)

— measures utilization of resources (good metric when many users:
¢.g., large data base queries, Web servers)

— Improving (decreasing) execution time will improve (increase)
throughput.

— Most of the time, improving throughput will decrease execution
time

CSE378 Performance.



Execution time Metric

* Execution time: inverse of performance

Performance , = 1/ (Execution_time ,)

* Processor A 1s faster than Processor B
Execution_time , < Execution_time ,
Performance , > Performance ,

o Relative performance (a computer is “n times faster” than another one)

Performance ,/ Performance ,=Execution_time ,/ Execution time |

CSE378 Performance. 5



Measuring execution time

Wall clock, response time, elapsed time

Some systems have a “time” function
— Unix 13.7u 23.6s 18:37 3% 2069+1821k 13+2410 62pf+0w

Difficult to make comparisons from one system to another
because of too many factors

Remainder of this lecture: CPU execution time
— Of interest to microprocessors vendors and designers

— Does not include time spent on I/0

CSE378 Performance.



Definition of CPU execution time

CPU execution time = CPU clock cycles*clock cycle time
 CPU clock cycles 1s program dependent thus
CPU execution_time 1s program dependent

* clock cycle time (nanoseconds, ns) depends on the
particular processor
* clock cycle time = 1/ clock cycle rate (rate in MHz)

— clock cycle time = 1ys, clock cycle rate =1 MHz
— clock cycle_time = Ins, clock cycle rate =1 GHz

« Alternate definition
CPU execution_time = CPU clock cycles / clock cycle rate

CSE378 Performance. 7



CPI -- Cycles per mstruction

e Definition: CPI average number of clock cycles per instr.
CPU clock cycles = Number of instr. * CPI
CPU exec _time = Number of instr. * CPI *clock cycle time
* Computer architects try to minimize CPI

— or maximize its inverse [PC : number of instructions per cycle
e CPI 1n 1solation 1s not a measure of performance

— program dependent, compiler dependent

— but good for assessing architectural enhancements (experiments with same
programs and compilers)

* In an ideal pipelined processor (to be seen soon) CPI =1
— but... not ideal so CPI > 1

— could have CPI <1 if several instructions execute in parallel (superscalar
processors)

CSE378 Performance. 8



Classes of instructions

Some classes of 1nstr. take longer to execute than others
— e.g., floating-point operations take longer than integer operations

Assign CPI’s per classes of inst., say CPL
CPU exec_time =2 (CPI. *C)* clock cycle_time
where C, 1s the number of insts. of class i that have been executed

Note that minimizing the number of instructions does not
necessarily improve execution time

Improving one part of the architecture can improve the CPI
of one class of instructions

— One often talks about the contribution to the CPI of a class of
nstructions

CSE378 Performance. 9



How to measure the average CPI
A given of the

Elapsed time: wall clock processor

CPU exec time = Number of instr. * CPI *clock cycle_'éime
Count 1nstructions executed in each class
Needs a simulator

— 1interprets every instruction and counts their number

or a profiler

— discover the most often used parts of the program and instruments
only those

— or use sampling

Use of programmable hardware counters

— modern microprocessors have this feature

CSE378 Performance. 10



Other popular performance measures: MIPS

MIPS (Millions of instructions per second)
MIPS = Instruction count / (Exec.time * 109)
MIPS = (Instr. count * clock rate)/(Instr. count *CPI * 10°)
MIPS = clock rate /(CPI * 109)

MIPS i1s a rate: the higher the better

MIPS 1n 1solation no better than CPI in 1solation
— Program and/or compiler dependent
— Does not take the instruction set into account

— can give “wrong” comparative results

CSE378 Performance.

11



Other metric: MFLOPS

e Similar to MIPS in spirit
» Used for scientific programs/machines
« MFLOPS: million of floating-point ops/second

CSE378 Performance.

12



Benchmarks

* Benchmark: workload representative of what a system will be used for

* Industry benchmarks

SPECint and SPECfp industry benchmarks updated every few years,
Currently SPEC CPU2000

Linpack (Lapack), NASA kernel: scientific benchmarks
TPC-A, TPC-B, TPC-C and TPC-D used for databases and data mining

Other specialized benchmarks (Olden for list processing, Specweb, SPEC
JVMOS etc...)

Benchmarks for desktop applications, web applications are not as standard

Beware! Compilers (command lines) are super optimized for the
benchmarks

CSE378 Performance. 13



How to report (benchmark) performance

* If you measure execution times use arithmetic mean

— e.g., for n benchmarks
(Zexec_time) / n
* If you measure rates use harmonic mean
n/ (2 llrate) = 1/(arithmetic mean)

CSE378 Performance.

14



Computer design: Make the common case fast

* Amdahl’s law (speedup)

* Speedup = (performance with enhancement)/(performance
base case)

Or equivalently,

Speedup = (exec.time base case)/(exec.time with
enhancement)
* For example, application to parallel processing
— s fraction of program that 1s sequential

— Speedup S is at most 1/s

— That is if 20% of your program is sequential the maximum speedup with
an infinite number of processors is at most 5

CSE378 Performance. 15



