
CSE 378
Quiz Section #2

Coding in MIPS Assembly

Let’s translate this C function into assembly:

i nt ar r [10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} ;

i nt comput e_smt h() {
 i nt i , sum=0;
 f or (i = 0; i < 10; i ++) {
 sum = sum + ar r [i] ;
 }
 pr i nt f (“ r esul t : %d” , sum) ;
 r et ur n sum;
}

So, now that we have our program, let us convert it to something that would be a bit easier to translate into
assembly. Here is the reworked version:

i nt ar r [10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} ;

voi d mai n() {
 i nt i , sum;

i = 0;
sum = 0;

 whi l e(i < 10) {
 sum = sum + ar r [i] ;
 i = i +1;
 }
 pr i nt f (“ r esul t : ”) ;
 pr i nt f (“ %d” , sum) ;
}

To begin with, you should think about which variables/constants in the program are global and which are
local. Global variables will need to be declared in a static data segment, for which you use the “.data”
directive. This is typically written before your code, which goes into the “.text” segment. Which variables
are global here, and which are local? Integer array arr is global. Static string “result: “ is also global – it’s
a global constant which has to be declared in the .data segment (there’s no way to include strings in MIPS
instructions!). So how do we actually declare globals? The directive “ .data” specifies to the assembler that
space for some data needs to be allocated in the “static data” portion of the program memory. Well, great,
but how do we actually declare what data it is? Some keywords are helpful:

. asci i z “ hel l o” # r eser ves space f or t hi s st r i ng, and pl aces
 # ‘ hel l o’ i nt o i t
. space 50 # r eser ves space f or 50 byt es, f or gener al use
. wor d 17, 27 # r eser ves space f or t wo wor ds (each 4 byt es) ,

 # and i ni t i al i zes t hem t o 17 and 27.

Some others: .byte, .half, .double…

Before any declaration, you can include labels, which will serve as addresses to the data (example in a
second).

Note that ALL global variables, and NO non-global variables go into the “static data” section. A local
variable, such as i or sum, does not belong here. So, for our global array, we could use the “space” keyword

to reserve enough memory. Since we also want to initialize it to 1-10 (e.g. for testing, etc.), we can also use
“ .word” and list the ten values separated by commas. Now, let’s worry about the string “result: ” in the
first printf(). That can also be placed into the global data section, using the “.asciiz” keyword. Making the
appropriate changes, our program now begins with

. dat a
ar r : . wor d 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
msg: . asci i z “ r esul t : “

/ / mai n f unct i on wi l l f ol l ow

What if we wanted to declare another word below msg? We need to be careful; what is wrong with saying:

msg: . asci i z “ asdf g“
 num: . wor d 42
num won’ t be aligned! ¾ chance you will crash (depending on length of preceding string). Fix? Use
“.align” keyword. .align N will align the next data item at a 2^N boundary. So here, you want to use:

msg: . asci i z “ asdf g“
 . al i gn 2 # al i gn at t he next 4 byt e (2^2) boundar y
 num: . wor d 42

Next, let us specify (to SPIM) where the main() code is. We need to use the . t ext directive to begin the
“code” segment. Everything that comes after it will be the actual executable code, and will get placed into
memory as the “text” segment of the program. Note that ALL the code goes into this section. So, our
function will now look like this:

. dat a
ar r : . wor d 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
msg: . asci i z “ r esul t : “

. t ext
. gl obl mai n # decl ar e mai n f unct i on as gl obal , al l ow cal l s t o i t
mai n:

i nt i , sum;
i = 0;
sum = 0;

 whi l e(i < 10) {
 sum = sum + ar r [i] ;
 i = i +1;
 }
 pr i nt f (“ r esul t : ”) ;
 pr i nt f (“ %d” , sum) ;

. end mai n

Well, what about the local variables, like i and sum? Where would they go? Simple – we can keep them in
temporary-value registers ($t0 through $t7, or $8 through $15). One important rule to always adhere to:
when programming in assembly, always always write down what each register represents. If you don’ t,
careless errors WILL happen, and painful debugging will ensue. So, it is a good idea to create something
like this somewhere in the file:

variable assignments:
t0 = i
t1 = sum
t2 = constant 10, for comparisons (we need to check when to break out of the while loop)
t3 = address of array elements (for loading from array)
t4 = temporary values

Great, we’ re set! Now let’s actually begin translating the code. Let’s initialize the local variables to their
necessary values:

. dat a
ar r : . wor d 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
msg: . asci i z “ r esul t : “

. t ext
. gl obl mai n # decl ar e mai n f unct i on as gl obal , al l ow cal l s t o i t
mai n:

addi $t 0, $0, 0 # cl ear i
addi $t 1, $0, 0 # cl ear sum
or i $t 2, $0, 10 # I ni t i al i zi ng t 2 t o i t s const ant val ue 10
l a $t 3, ar r # l oad addr ess of ar r ay i nt o t 4, pseudoi nst r

whi l e(i < 10) {

 sum = sum + ar r [i] ;
 i = i +1;
 }
 pr i nt f (“ r esul t : ”) ;
 pr i nt f (“ %d” , sum) ;

. end mai n

Notice how we initialized $t3 by using the “arr” label – the (base) address of our array. Now, let us write
the loop in assembly. Remember, that we will want to break out of it when $t0 is no longer less than $t2.

Important: pay attention on how we walk through the array. We need to compute current element address
for each iteration (for loading). Elements are separated by 4 bytes (easy to screw up)! There are a few
ways to do this, this one is most efficient (another (see lecture) involves multiplication of i by 4 and adding
to base – here, we just add 4 to last element’s address to get the current element address).

Also, at the very end of the function, we will want to return back to the caller. Therefore, we will need to
jump to where we were called from – information stored in $ra.

. dat a
ar r : . wor d 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
msg: . asci i z " Resul t : "

. t ext
. gl obl mai n

var i abl e assi gnment s:
t 0 = i
t 1 = sum
t 2 = const ant 10, f or compar i sons
t 3 = addr ess of ar r ay el ement s
t 4 = t empor ar y val ues

mai n:
addi $t 0, $0, 0 # cl ear i
addi $t 1, $0, 0 # cl ear sum
or i $t 2, $0, 10 # I ni t i al i z i ng t 2 t o i t s const ant val ue 10
l a $t 3, ar r # l oad addr ess of ar r ay i nt o t 4

l oop:
sl t $t 4, $t 0, $t 2 # compar e, $t 4 = i < sum ? 1 : 0
beq $t 4, $0, end # i f i i s not < 10, exi t t he l oop

l w $t 4, 0($t 3) # l oad cur r ent ar r ay el ement i nt o t 4
add $t 1, $t 1, $t 4 # add i t t o sum
add $t 0, $t 0, 1 # i ncr ement i
add $t 3, $t 3, 4 # i ncr ement cur r ent ar r ay el ement poi nt er
j l oop

end:

pr i nt f (“ r esul t : ”) ;

 pr i nt f (“ %d” , sum) ;

j r $r a
. end mai n

What about those printfs? How do we get rid of those? We use the syscal l instruction to perform these
operations. To do so, we insert the system call number into register $v0, and its arguments into the $a-
registers. And then we issue the “syscall” instruction. More specifically, to print an integer, we use system-
call number 1, and set $a0 to the integer we want to print. To print a string, we use system-call number 4,
and set $a0 to contain the base address of the string. To read in an integer, we use system-call number 5.
The result is returned in register $v0 (and the error code in $v1, so both v0 and v1 are destroy by any
syscall!). These are far from the only system calls available – to find out more about them, consult the full
listings in the book. So, after applying these changes to our program, it becomes…

ar r : . wor d 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
msg: . asci i z " Resul t : "

. t ext
. gl obl mai n

var i abl e assi gnment s:
t 0 = i
t 1 = sum
t 2 = const ant 10, f or compar i sons
t 3 = addr ess of ar r ay el ement s
t 4 = t empor ar y val ues

mai n:
addi $t 0, $0, 0 # cl ear i
addi $t 1, $0, 0 # cl ear sum
or i $t 2, $0, 10 # I ni t i al i z i ng t 2 t o i t s const ant val ue 10
l a $t 3, ar r # l oad addr ess of ar r ay i nt o t 4

l oop:
sl t $t 4, $t 0, $t 2 # compar e, $t 4 = i < sum ? 1 : 0
beq $t 4, $0, end # i f i i s not < 10, exi t t he l oop
l w $t 4, 0($t 3) # l oad cur r ent ar r ay el ement i nt o t 4
add $t 1, $t 1, $t 4 # add i t t o sum
add $t 0, $t 0, 1 # i ncr ement i
add $t 3, $t 3, 4 # i ncr ement cur r ent ar r ay el ement poi nt er
j l oop

end:

addi $v0, $0, 4 # Now we pr i nt out r esul t : st r i ng
l a $a0, msg
syscal l

addi $v0, $0, 1 # f ol l owed by t he act ual sum (whi ch i s i n t 1)
add $a0, $t 1, $0
syscal l

j r $r a
. end mai n

And this is the full assembly version of our simple C program above.

