& Caches — basic idea

n Small, fast memory
n Stores frequently-accessed blocks of memory.
n When it fills up, discard some blocks and
replace them with others.
n Works well if we reuse data blocks
» Examples:
» Incrementing a variable

» Loops
» Function calls

$ Why do caches work

n Locality principles

» Temporal locality
« Likely to reference same location several times
Variables are reused in program
Loops, function calls, etc.
» Spacial locality

» Reference is likely to be near another recent
reference

» Matrices, arrays
« Stack accesses

& Cache performance example

n Problem (let’s assume single cycle CPU)
n 500 MHz CPU ==» cycle time = 2 ns

» Instructions: arithmetic 50%, load/store 30%, branch
20%.

» Cache: hit rate: 95%, miss penalty: 60 ns (or 30
cycles), hit time: 2 ns (or 1 cycle)

» MIPS CPI w/o cache for load/store:
n05*%1+4+02*%1+03*%30=9.7

» MIPS CPI with cache for load/store:
n 0.5*%1+4+0.2*1+0.3*(.95*1 + 0.05*30) = 1.435

$ Cache types

n Direct-mapped
» Memory location maps to single specific cache line (block)
n Set-associative
» Memory location maps to a set containing several blocks.
» Sets can have 2,4,8,etc. blocks. Blocks/set = associativity
» Why? Resolves conflicts in direct-mapped caches.
n Fully-associative
» Cache only has one set. All memory locations map to this set.
» This one set has all the blocks, and a given location could be in
any of these blocks
» No conflict misses, but costly (why?). Only used in very small
caches.

& Direct-mapped cache example

n 4 KB cache, each block is 32 bytes
n How many blocks?

n How long is the index to select a block?

n How long is the offset (displacement) to select a
byte in block?

n How many bits left over if we assume 32-bit
address? These bits are tag bits

i Direct-mapped cache example

n 4 KB cache, each block is 32 bytes
" 4KB=212,32=25
n How many blocks?
n 212 bytes / 25 bytes in block = 27 = 128 blocks
» How long is the index to select a block?
n log,128 = 7 bits
» How long is the offset (displacement) to select a
byte in block?
» 5 bits
» How many bits left over if we assume 32-bit
address? These bits are tag bits
» 32-7-5 =20 bits




& Example continued

» Address and cache:

& Cache size

n 4 KB visible size
n Let’s look at total space and overhead:

» Each block contains:
» 1 valid bit
» 20-bit tag
» 32 bytes of data = 256 bits
» Total block (line) size: 1+20+256 = 277 bits
« Total cache size in hardware, including
overhead storage:

277 bits * 128 blocks = 35456 bits = 4432 bytes = 4.32 Kb
» Overhead: 0.32 Kb (336 bytes) for valid bits and tags

& Cache access examples...

Consider a direct-map Eed cache with 8 blocks and 2-byte
block. Total size = 2 = 16 bytes

n Address: 1 bit for offset/displacement, 3 bits for index,
rest for tag

n Consider a stream of reads to these bytes:

» These are byte addresses:

» 3,13,1,0,5,1,4,32,33,1

. Corresponding block addresses ((byteaddr/2)%8):

" 1,6,0,0,20,2, 0 (16%S8), 0, 0.

. Tags: 2 for 32, 33, 0 for all others ((byteaddr/2)/8).

Let’s look at what this looks like. How many misses?

What if we increase associativity to 2? Will have 4 sets, 2

blocks in each set, still 2 bytes in each block. Total size

still 16 bytes. How does behavior change?...

» What if we add a victim cache?

s

E]

& Victim cache

n Reduce conflict misses
 Especially in direct-mapped caches
n Very small, fully-associative
n A possible hierarchy with victim caches:

New load

L1 Miss Miss

Main memory

Hit

Hit

Result

& Review of Victim Cache Operation

n Hitin L1 — done; nothing else needed

n Miss in L1 for block 4, hit in victim cache at
location v:
» swap contents of band v

n Miss in L1, miss in victim cache:
» load missing item from next level and put in L1
» put entry replaced in L1 in victim cache
o if victim cache is full, evict one of its entries




