CSE 378
Quiz Section #2
Coding in MIPS Assembly

Let’strandate this C function into assembly:
int arr[10] = {1,2,3,4,5,6,7,8,9, 10};

int compute_snth() {
int i, sumeO;
for (i =0; i < 10; i++) {
sum = sum+ arr[i];
}

printf(“result: %", sum;
return sum

}

So, now that we have our program, let us convert it to something that would be a bit easier to trandate into
assembly. Here is the reworked version:

int arr[10] = {1,2, 3,4,5,6,7,8,9,10};

void main() {
int i, sum
i = 0;
sum = O;
while(i < 10) {
sum = sum+ arr[i];
i = i+1;
}
printf(“result: ”);
printf(“%l”, sum;
}

To begin with, you should think about which variables/constants in the program are global and which are
local. Global variableswill need to be declared in a static data segment, for which you use the “.data”
directive. Thisistypically written before your code, which goesinto the“.text” segment. Which variables
are global here, and which arelocal? Integer array arr isglobal. Static string “result: * isalso global —it’s
aglobal constant which hasto be declared in the .data segment (there’ sno way to include stringsin MIPS
instructions!). So how do we actualy declare globals? The directive “.data” specifies to the assembler that
space for some data needs to be allocated in the “ static data” portion of the program memory. Well, great,
but how do we actually declare what data it is? Some keywords are helpful:

.asciiz "hello” # reserves space for this string, and pl aces
'hello into it
. Space 50 # reserves space for 50 bytes, for general use
.word 17,27 # reserves space for two words (each 4 bytes),
and initializes themto 17 and 27.

Some others: .byte, .half, .double...

Before any declaration, you can include labels, which will serve as addresses to the data (examplein a
second).

Note that ALL global variables, and NO non-global variables go into the “ static data” section. A local
variable, such asi or sum, does not belong here. So, for our global array, we could use the “ space” keyword

to reserve enough memory. Since we also want to initializeit to 1-10 (e.g. for testing, etc.), we can also use
“.word” and list the ten values separated by commas. Now, let’sworry about the string “result: ” in the
first printf(). That can aso be placed into the global data section, using the “.asciiz” keyword. Making the
appropriate changes, our program now begins with

.data

arr: .word 1,2,3,4,5,6,7,8,9, 10
msg: .asciiz “result: *

// main function will follow

What if we wanted to declare another word below msg? We need to be careful; what iswrong with saying:
nmsg: .asciiz “asdfg”
num . word 42
num won't be aligned! % chance you will crash (depending on length of preceding string). Fix? Use
“.align” keyword. .align N will align the next dataitem at a 2*N boundary. So here, you want to use:
nmsg: .asciiz “asdfg”
.align 2 # align at the next 4 byte (2"2) boundary
num . word 42

Next, let us specify (to SPIM) wherethe main() code is. We need to usethe. t ext directive to begin the
“code” segment. Everything that comes after it will be the actual executable code, and will get placed into
memory as the “text” segment of the program. Note that ALL the code goes into this section. So, our
function will now look likethis:

.data
arr: .word 1,2,3,4,5,6,7,8,9, 10
msg: .asciiz “result: *
.text
.globl main # declare main function as global, allowcalls to it
mai n:
int i, sum
i = 0;
sum = 0;
while(i < 10) {
sum = sum+ arr[i];
=i+l
}
printf(“result: ”);
printf(“%l”, sum;
.end main

Well, what about the local variables, likei and sum? Where would they go? Simple —we can keep them in
temporary-value registers ($t0 through $t7, or $8 through $15). One important rule to always adhere to:
when programming in assembly, always always write down what each register represents. If you don’t,
cardess errors WILL happen, and painful debugging will ensue. So, it isagood idea to create something
like this somewherein thefile:

variable assignments:

#10=1i

#11=sum

12 = constant 10, for comparisons (we need to check when to break out of the while loop)

13 = address of array e ements (for loading from array)

14 = temporary values

Great, we're set! Now let’s actually begin trandating the code. Let’sinitialize the local variablesto their
necessary values:

.data

arr: .word 1,2,3,4,5,6,7,8,9, 10
nsg: .asciiz “result:

. text

.globl main # declare main function as global, allowcalls to it
mai n:

addi $tO0, $0, O # clear i

addi $t1, $0, O # clear sum

ori $t2, $0, 10 # Initializing t2 to its constant value 10

| a $t3, arr # load address of array into t4, pseudoinstr

while(i < 10) {
sum= sum+ arr[i];
i = i+1;

}

printf(“result: ");

printf(“%l”, sun;
.end main

Notice how we initialized $t3 by using the “arr” label — the (base) address of our array. Now, let uswrite
the loop in assembly. Remember, that we will want to break out of it when $t0 isno longer less than $t2.

Important: pay attention on how we walk through the array. We need to compute current element address
for each iteration (for loading). Elements are separated by 4 bytes (easy to screw up)! Thereare afew
ways to do this, this one ismost efficient (another (see lecture) involves multiplication of i by 4 and adding
to base — here, we just add 4 to last element’ s address to get the current element address).

Also, at thevery end of the function, we will want to return back to the caller. Therefore, we will need to
jump to where we were called from — information stored in $ra.

.data

arr: .word 1,2,3,4,5,6,7,8,9, 10
nMeg: .asciiz "Result: "

. text

.globl main

vari abl e assi gnnent s:

10 =1

#t1l = sum

t2 = constant 10, for conparisons

t3 = address of array el enents

t4 = tenmporary val ues

mai n:

addi $t0, $0, 0 # clear

addi $t1, $0, 0 # clear sum

ori $t2, $0, 10 # Initializing t2 to its constant value 10
la $t3, arr # | oad address of array into t4
| oop:

slt $t4, $t0, $t2 # conpare, $t4 =i <sum? 1 : O

beq $t4, $0, end # if i is not < 10, exit the | oop

lw $t4, 0($t3) # load current array element into t4

add $t1, $t1, $t4 # add it to sum

add $t0, $t0, 1 # increnment i

add $t3, $t3, 4 # increnent current array el enment pointer
j loop

end:

printf(“result: ");
printf(“%l”, sunm;

jr %$ra
.end nmain

What about those printfs? How do we get rid of those? We usethesyscal | instruction to perform these
operations. To do so, we insert the system call number into register $v0, and its arguments into the $a-
registers. And then we issue the “syscall” ingtruction. More specifically, to print an integer, we use system-
call number 1, and set $a0 to the integer we want to print. To print a string, we use system-call number 4,
and set $a0 to contain the base address of the string. To read in an integer, we use system-call number 5.
Theresult isreturned in register $v0 (and the error codein $v1, so both vO and v1 are destroy by any
syscalll). These arefar from the only system calls available — to find out more about them, consult the full
listingsin the book. So, after applying these changesto our program, it becomes...

arr: .word 1,2,3,4,5,6,7,8,9,10
nMsg: .asciiz "Result: "

. text
.globl main

vari abl e assi gnnment s:

10 =1

#t1l = sum

t2 = constant 10, for conparisons

t3 = address of array elenents

t4 = tenmporary val ues

mai n:

addi $t0, $0, 0 # clear

addi $t1, $0, 0 # clear sum

ori $t2, $0, 10 # Initializing t2 to its constant value 10
la $t3, arr # | oad address of array into t4

| oop:

slt $t4, $t0, $t2 # conpare, $t4 =i <sum? 1 : O

beq $t4, $0, end # if i is not < 10, exit the | oop

lw $t4, 0($t3) # load current array element into t4

add $t1, $t1, $t4 # add it to sum

add $t0, $t0, 1 # increnent

add $t3, $t3, 4 # increnent current array el enment pointer
j loop

end:

addi $vO0, $0, 4 # Now we print out result: string
la $a0, nsg
syscal |

addi $v0, $0, 1 # followed by the actual sum (which is in t1)
add $a0, $t1, $0
syscal |

jr %$ra
.end nmain

And thisisthefull assembly version of our simple C program above.

