& Virtual Memory Review

n Goal: give illusion of a large memory
» Allow many processes to share single memory
n Strategy
» Break physical memory up into blocks (pages)
» Page might be in physical memory or on disk.
n Addresses:
» Generated by Iw/sw: virtual
» Actual memory locations: physical

& Memory access

n Load/store/PC computes a virtua/ address

n Need address translation
» Convert virtual addr to physical addr
» Use page table for lookup
» Check virtual address:
» If page is in memory, access memory with physical address
May also need to check access permissions
» If page is in not in memory, access disk
Page fault
Slow - so run another program while it's doing that
» Do translation in hardware
» Software translation would be too slow!

& Handling a page fault

n Occurs during memory access clock cycle
n Handler must:
» Find disk address from page table entry

» Choose physical page to replace
. if page dirty, write to disk first
» Read referenced page from disk into physical page

$ TLB: Translation Lookaside Buffer

» Address translation has a high degree of locality
» If page accessed once, highly likely to be accessed again soon.
» So, cache a few frequently used page table entries
» TLB = hardware cache for the page table
» Make translation faster
» Small, frequently fully-associative
n TLB entries contain
» Valid bit
» Other housekeeping bits
» Tag = virtual page number
» Data = Physical page number
» Misses handled in hardware (dedicated FSM) or software
(OS code reads page table)

& TLB Misses

n TLB miss means one of two things
» Page is present in memory, need to create the missing
mapping in the TLB
» Page is not present in memory (page fault), need to
transfer control to OS to deal with it.
» Need to generate an exception

. Copy page table entry to TLB — use appropriate replacement
algorithm if you need to evict an entry from TLB.

i Optimizations

n Make the common case fast

n Speed up TLB hit + L1 Cache hit

» Do TLB lookup and cache lookup in parallel

» Possible if cache index is independent of virtual address
translation

» Have cache indexed by virtual addresses

& TLB Example - 7.39, 7.40

n Given:

n 40-bit virtual addr

» 16KB pages

» 36-bit physical byte address

n 2-way set associative TLB with 256 total entries
n Total page table size?
n Memory organization?

$ Page table/address parameters

n 16KB=2714, so 16K pages need 14 bits for an
offset inside a page.

n The rest of the virtual address is the virtual page
index, and it's 40-14 = 26 bits long, for 226
page table entries.

» Each entry contains 4 bits for

valid/protection/dirty information, and the

physical frame number, which is 36-14 = 22 bits
long, for a total of 26 bits.

The total page table size is then 26 bits * 2/26

entries = 208 MB

=

& Memory organization with TLB

[26-bit virtual page number =

[tag [index NNSGEIOHSCONN

WN O

126 [T]
127 [T

TLB:

128 sets, each w/2 entries 2-1 MUX

s : ——
Address \ physmalzgage #

