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How to represent real numbers

• In decimal scientific notation: 5.280 x 103

– sign
– fraction
– base (i.e., 10) to some power

• Most of the time, usual representation 1 digit at left of 
decimal point
– Example: - 0.1234 x 106

• A number is normalized if the leading digit is not 0
– Example: -1.234 x 105
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Real numbers representation inside 
computer

• Use a representation akin to scientific notation

sign x mantissa x base exponent

• Many variations in choice of representation for
– mantissa (could be 2’s complement, sign and magnitude etc.)
– base (could be 2, 8, 16 etc.)
– exponent (cf. mantissa)

• Arithmetic support for real numbers is called floating-
point arithmetic
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Floating-point representation: IEEE 
Standard

• Basic choices
– A single precision number must fit into 1 word (4 bytes, 32 bits)
– A double precision number must fit into 2 words
– The base for the exponent is 2
– There should be approximately as many positive and negative 

exponents

• Additional criteria
– The mantissa will be represented in sign and magnitude form
– Numbers will be normalized
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Example: MIPS representation of IEEE 
Standard

• A number is represented as : (-1)S. F . 2E

• In single precision the representation is:

s exponent mantissa

31                  2322                                       0

8 bits 23 bits
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MIPS representation (continued)

• Bit 31 sign bit for mantissa (0 pos, 1 neg)
• Exponent 8 bits (“biased” exponent, see next slide)
• mantissa 23 bits : always a fraction with an implied 

binary point at left of bit 22
• Number is normalized (see implication next slides)
• 0 is represented by all zero’s.
• Note that having the most significant bit as sign bit 

makes it easier to test for positive and negative
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Biased exponent

• The “middle” exp. (01111111) will represent exponent 
0, i.e. 127

• All exps starting with a “1” will be positive exponents .
– Example: 10000001 is exponent 2 (10000001 -01111111)

• All exps starting with a “0” will be negative exponents
– Example 01111110 is exponent -1 (01111110 - 01111111)

• The largest positive exponent will be 11111111, 
about 1038

• The smallest negative exponent is about 10-38
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Normalization

• Since numbers must be normalized, there is an 
implicit “one” at the left of the binary point

• No need to put it in (improves precision by 1 bit)
• But need to reinstate it when performing operations.
• In summary, in MIPS a floating-point number has the 

value:
(-1)S . (1 + mantissa) . 2 (exponent - 127)



12/11/2005 CSE 378 Floating-point 8

Double precision

• Takes 2 words (64 bits)
• Exponent 11 bits (instead of 8)
• Mantissa 52 bits (instead of 23)
• Still biased exponent and normalized numbers
• Still 0 is represented by all zeros
• We can still have overflow (the exponent cannot 

handle super big numbers) and underflow (the 
exponent cannot handle super small numbers)
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Floating-Point Addition

• Quite “complex” (more complex than multiplication)
• Need to know which of the addends is larger  (compare 

exponents)
• Need to shift “smaller” mantissa
• Need to know if mantissas have to be added or 

subtracted (since it’s a sign/magnitude representation)
• Need to normalize the result
• Correct round-off procedures are not simple (not 

covered in detail here)
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One of the 4 round-off modes

• Round to nearest even
– Example 1: in base 10. Assume 2 digit accuracy.

3.1 *100 + 4.6 * 10 -2  = 3.146 * 100 

clearly should be rounded to 3.1 * 100 

– Example 2: 
3.1 *100 + 5.0* 10 -2  = 3.15 * 100

By convention, round-off to nearest “even” number 3.2 * 100

• Other round-off modes: towards 0, +∞, -∞
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F-P add (details for round-off omitted)

1. Compare exponents . If e1 < e2, swap the 2 operands such that
d = e1 - e2 >= 0. Tentatively set exponent of result to e1.

2. Insert 1’s at left of mantissas. If the signs of operands differ, replace 
2nd mantissa by its 2’s complement. 

3. Shift 2nd mantissa d bits to the right (this is an arithmetic shift, i.e., 
insert either 1’s or 0’s depending on the sign of the second 
operand)

4. Add the (shifted) mantissas. (There is one case where the result 
could be negative and you have to take the 2’s complement; this 
can happen only when d = 0 and the signs of the operands are 
different.)
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F-P Add (continued)

5. Normalize (if there was a carry-out in step 4, shift right once; else 
shift left until the first “1” appears on msb)

6. Modify exponent to reflect the number of bits shifted in previous 
step
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Example

• Add decimal: 0.375 + 0.75
• 3/23 + 3/22 =   0.011 + 0.11  =  1.1 x 2-2 +  1.1 x 2-1

• Now add:
• Align fractions:  0.11 x 2-1 +  1.1 x 2-1

• Add fractions:  10.01 x 2-1

• Normalize: 10.01 x 2-1 =  1.001 x 20

• Round: Not needed
• 1.001 x 20 =  1 + 1/23 =  1 + 1/8  =  1.125 decimal
• In IEEE single precision 0.75 i.e. 0.11 is

0 0111 1110 100 0000 0000 0000 0000 0000   why?
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Using pipelining

• Stage 1
– Exponent compare

• Stage 2
– Shift and Add

• Stage 3
– Round-off , normalize and fix exponent

• Most of the time, done in 2 stages.
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Floating-point multiplication

• Conceptually easier
1. Add exponents (careful, subtract one “bias”)
2. Multiply mantissas (don’t have to worry about signs)
3. Normalize and round-off and get the correct sign
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Pipelining

• Use tree of “carry-save adders” (cf. CSE 370) Can 
cut-it off in several stages depending on hardware 
available

• Have a “regular” adder in the last stage.
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Special Values

• Allow computation to continue in face of exceptional 
conditions 
– For example: divide by 0, overflow, underflow

• Special value: NaN (Not a Number; e.g., sqrt(-1))
– Operations such as 1 + NaN yield NaN

• Special values: +∞ and -∞ (e.g, 1/0 is +∞)
• Can also use “denormal” numbers for underflow and 

overflow allowing a wider range of values


