
10/10/2005 CSE378 Instr. encoding. (ct’d) 1

Examples of branch instructions

Beq rs,rt,target #go to target if rs = rt
Beqz rs, target #go to target if rs = 0
Bne rs,rt,target #go to target if rs != rt
Bltz rs, target #go to target if rs < 0

etc.

Are all of these instructions implemented in the hardware?

10/10/2005 CSE378 Instr. encoding. (ct’d) 2

Comparisons between two registers

• Use an instruction to set a third register
slt rd,rs,rt #rd = 1 if rs < rt else rd = 0
sltu rd,rs,rt #same but rs and rt are considered unsigned

• Example: Branch to Lab1 if $5 < $6
slt $10,$5,$6 #$10 = 1 if $5 < $6 otherwise $10 = 0
bnez $10,Lab1 # branch if $10 =1, i.e., $5<$6

• There exist pseudo instructions to help you!
blt $5,$6,Lab1 # pseudo instruction translated into

slt $1,$5,$6
bne $1,$0,Lab1

Note the use of register 1 by the assembler and the fact that
computing the address of Lab1 requires knowledge of how pseudo-
instructions are expanded

10/10/2005 CSE378 Instr. encoding. (ct’d) 3

Unconditional transfer of control
• Can use “beqz $0, target”

– Very useful but limited range (± 32K instructions)

• Use of Jump instructions
j target #special format for target inst address (26 bits)
jr $rs #jump to address stored in rs (good for switch

#statements and transfer tables)

• Call/return functions and procedures
jal target #jump to target address; save PC of

#following instruction in $31 (aka $ra)
jr $31 # jump to address stored in $31 (or $ra)

Also possible to use jalr rs,rd #jump to address stored in rs; rd = PC of
following instruction in rd with default rd = $31

10/10/2005 CSE378 Instr. encoding. (ct’d) 4

Branch addressing format

• Need Opcode, one or two registers, and an offset
– No base register since offset added to PC

• When using one register (i.e., compare to 0), can use
the second register field to expand the opcode
– similar to function field for arithmetic instructions

beq $4,$5,1000

bgtz $4,1000

Opc rs rt/func target offset

10/10/2005 CSE378 Instr. encoding. (ct’d) 5

How to address operands

• The ISA specifies addressing modes
• MIPS, as a RISC machine has very few addressing

modes
– register mode. Operand is in a register
– base or displacement or indexed mode

• Operand is at address “register + 16-bit signed offset”

– immediate mode. Operand is a constant encoded in the
instruction

– PC-relative mode. As base but the register is the PC

10/10/2005 CSE378 Instr. encoding. (ct’d) 6

Some interesting instructions. Multiply

• Multiplying 2 32-bit numbers yields a 64-bit result
– Use of HI and LO registers
Mult rs,rt #HI/LO = rs*rt
Multu rs,rt
Then need to move the HI or LO or both to regular registers
mflo rd #rd = LO
mfhi rd #rd = HI
Once more the assembler can come to the rescue with a

pseudo inst
mul rd,rs,rt #generates mult and mflo

#and mfhi if necessary

10/10/2005 CSE378 Instr. encoding. (ct’d) 7

Some interesting instructions. Divide

• Similarly, divide needs two registers
– LO gets the quotient
– HI gets the remainder

• If an operand is negative, the remainder is not
specified by the MIPS ISA.

10/10/2005 CSE378 Instr. encoding. (ct’d) 8

Logic instructions

• Used to manipulate bits within words, set-up masks
etc.

• A sample of instructions
and rd,rs,rt #rd=AND(rs,rt)
andi rd,rs,immed
or rd,rs,rt
xor rd,rs,rt

• Immediate constant limited to 16 bits (zero-
extended). If longer mask needed, use Lui.

• There is a pseudo-instruction NOT
not rt,rs #does 1’s complement (bit by bit

#complement of rs in rt)

10/10/2005 CSE378 Instr. encoding. (ct’d) 9

Example of use of logic instructions

• Set the low-order byte of $6 to all 1’s; leave the other
bits unchanged
ori $6,$6,0x00ff #$6[7:0] set to 1’s

• Clear high-order byte of register 7 but leave the 3
other bytes unchanged
lui $5,0x00ff #$5 = 0x00ff0000
ori $5,$5,0xffff #$5 = 0x00ffffff
and $7,$7,$5 #$7 =0x00…… (…whatever was

#there before)

10/10/2005 CSE378 Instr. encoding. (ct’d) 10

Shift instructions

• Logical shifts -- Zeroes are inserted
sll rd,rt,shm #left shift of shm bits; inserting 0’s on

#the right
srl rd,rt,shm #right shift of shm bits; inserting 0’s

#on the left
• Arithmetic shifts (useful only on the right)

– sra rd,rt,shm # Sign bit is inserted on the left
• Example let $5 = 0xff00 0000

sll $6,$5,3 #$6 = 0xf800 0000
srl $6,$5,3 #$6 = 0x1fe0 0000
sra $6,$5,3 #$6 = 0xffe0 0000

10/10/2005 CSE378 Instr. encoding. (ct’d) 11

Example -- High-level language

int a[100];
int i;

for (i=0; i<100; i++){
a[i] = 5;

}

10/10/2005 CSE378 Instr. encoding. (ct’d) 12

Assembly language version
Assume: start address of array a in $15.
We use $8 to store the value of i and $9 for the value 5

add $8,$0,$0 #initialize i
li $9,5 #$9 has the constant 5

Loop: mul $10,$8,4 #$10 has i in bytes
#could use a shift left by 2

addu $14,$10,$15 #address of a[i]
sw $9,0($14) #store 5 in a[i]
addiu $8,$8,1 #increment i
blt $8,100,Loop #branch if loop not finished

10/10/2005 CSE378 Instr. encoding. (ct’d) 13

Machine language version
(generated by SPIM)

[0x00400020] 0x00004020 add $8, $0, $0 ; 1: add $8,$0,$0
[0x00400024] 0x34090005 ori $9, $0, 5 ; 2: li $9,5
[0x00400028] 0x34010004 ori $1, $0, 4 ; 3: mul $10,$8,4
[0x0040002c] 0x01010018 mult $8, $1
[0x00400030] 0x00005012 mflo $10
[0x00400034] 0x014f7021 addu $14, $10, $15 ; 4: addu $14,$10,$15
[0x00400038] 0xadc90000 sw $9, 0($14) ; 5: sw $9,0($14)
[0x0040003c] 0x25080001 addiu $8, $8, 1 ; 6: addiu $8,$8,1
[0x00400040] 0x29010064 slti $1, $8, 100 ; 7: blt $8,100,Loop
[0x00400044] 0x1420fff9 bne $1, $0, -28 ;[Loop-0x00400044]

