MIPS History

MIPS is a computer family

— R2000/R3000 (32-bit); R4000/4400 (64-bit); R10000 (64-bit)
etc.

MIPS originated as a Stanford research project
under the direction of John Hennessy
— Microprocessor without /nterlocked Pipe Stages

MIPS Co. bought by SGI

MIPS used in previous generations of DEC (then
Compag, now HP) workstations

Now MIPS Technologies is in the embedded systems
market

MIPS is a RISC

10/04/2005 CSE378 MIPS ISA 1

ISA MIPS Registers

« Thirty-two 32-bit registers $0,%1,...,$31 used for

— integer arithmetic; address calculation; temporaries; special-
purpose functions (stack pointer etc.)

« A 32-bit Program Counter (PC)

* Two 32-bit registers (HI, LO) used for mult. and
division

 Thirty-two 32-bit registers $f0, $f1,...,$f31 used for

floating-point arithmetic
— Often used in pairs: 16 64-bit registers

« Registers are a major part of the “state” of a process

10/04/2005 CSE378 MIPS ISA 2

MIPS Register names and conventions

Register Name Function Comment

$0 Zero Always 0 No-op on write

$1 $at Reserved for assembler Don’t use it

$2-3 $v0-vl Expr. Eval/funct. Return

$4-7 $a0-a3 Proc./func. Call parameters

$8-15 $t0-17 Temporaries; volatile Not saved on proc. Calls
$16-23 $s0-s7 Temporaries Should be saved on calls
$24-25 $t8-19 Temporaries; volatile Not saved on proc. Calls
$26-27 $k0-k1 Reserved for O.S. Don’t use them

$28 $gp Pointer to global static memory

$29 $sp Stack pointer

$30 $p Frame pointer

$31 $ra Proc./funct return address

10/04/2005 CSE378 MIPS ISA 3

MIPS = RISC = Load-Store architecture

* Every operand must be in a register

— Except for some small integer constants that can be in the
instruction itself (see later)

« Variables have to be loaded in registers
* Results have to be stored in memory

« Explicit Load and Store instructions are needed
because there are many more variables than the
number of registers

10/04/2005 CSE378 MIPS ISA 4

Example

 The HLL statements
a=b+c
d=a+b
» will be “translated” into assembly language as:
load b in register rx
load c in register ry
rz<-rx+ry
storerzin a # not destructive; rz still contains the value of a
n<-rz+rx
store rt in d

10/04/2005 CSE378 MIPS ISA 5

MIPS Information units

Data types and size:
— Byte
— Half-word (2 bytes)
— Word (4 bytes)
— Float (4 bytes; single precision format)
— Double (8 bytes; double-precision format)

Memory is byte-addressable

A data type must start at an address evenly divisible
by its size (in bytes)

In the little-endian environment, the address of a
data type is the address of its lowest byte

10/04/2005 CSE378 MIPS ISA 6

Address3ingzof ;nfoormation units

. . Byte address 0
— |~ N\
Byte address 2 P \\Half-word address 0
Half-word address 2~ Word address 0

] AN
Byte address 5 / \B yte address 8

alf-word address 8

Word address 8

10/04/2005 CSE378 MIPS ISA 7

SPIM Convention

Words listed from left to right but little endians within words

[0x7fffebdo] OXOOMOOIS OXboooooml 0x00000005 0x0001aff

\

Byte 7fffebd2 ~ Word 7fffebd4 Half-word 7fffebde

10/04/2005 CSE378 MIPS ISA 8

Assembly Language programming or
How to be nice to your TAs

Use lots of detailed comments

Don’t be too fancy

Use lots of detailed comments

Use words (rather than bytes) whenever possible
Use lots of detailed comments

Remember: The word’s address evenly divisible by 4
Use lots of detailed comments

The word following the word at address i/ is at
address /+4

Use lots of detailed comments

10/04/2005 CSE378 MIPS ISA 9

MIPS Instruction types

« Few of them (RISC philosophy)

* Arithmetic
— Integer (signed and unsigned); Floating-point
* Logical and Shift
— work on bit strings
» Load and Store
— for various data types (bytes, words,...)
« Compare (of values in registers)

» Branch and jumps (flow of control)
— Includes procedure/function calls and returns

10/04/2005 CSE378 MIPS ISA

10

Notation for SPIM instructions

« Opcode rd,rs,t
e Opcode rt, rs, immed

e where

— rd is always a destination register (result)
— rs is always a source register (read-only)

— rt can be either a source or a destination (depends on the
opcode)

— immed is a 16-bit constant (signed or unsigned)

10/04/2005 CSE378 MIPS ISA 11

Arithmetic instructions in SPIM

* Don’t confuse the SPIM format with the “encoding” of
instructions that we’ll see soon

Opcode Operands Comments
Add rd,rs,rt #rd =rs + rt
Addi rt,rs,immed #rt =rs + immed
Sub rd,rs,rt #rd =rs - rt

10/04/2005 CSE378 MIPS ISA 12

10/04/2005

Add
Add
Sub

Addi
Addi

Addi
Sub

Examples

$8,$9,$10
$t0,5t1,5t2
$s2,$s1,%$s0

$a0,%t0,20
$a0,5t0,-20

$t0,$0,0
$t5,$0,5t5

CSE378 MIPS ISA

#$8=3$9+%$10
#5t0=5t1+5t2
#$s2=%s1-3s0

#$a0=%t0+20
#$a0=5t0-20

#clear $t0
#5t5 = -$t5

13

Integer arithmetic

 Numbers can be signed or unsigned

 Arithmetic instructions (+,-,*,/) exist for both signed
and unsigned numbers (differentiated by Opcode)
— Example: Add and Addu
Addi and Addiu
Mult and Multu

« Signed numbers are represented in 2's complement

 For Add and Subtract, computation is the same but
— Add, Sub, Addi cause exceptions in case of overflow

— Addu, Subu, Addiu don’t

10/04/2005 CSE378 MIPS ISA 14

How does the CPU know if the numbers
are signed or unsigned?

It does not!

* You do (or the compiler does)

* You have to tell the machine by using the right
instruction (e.g. Add or Addu)

10/04/2005 CSE378 MIPS ISA 15

