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Evolution in memory management 
techniques

• In early days, single program ran on the whole 
machine
– used all the memory available

• Even so, there was often not enough memory to hold 
data and program for the entire run
– use of overlays, i.e., static partitioning of program and data 

so that parts that were not needed at the same time could 
share the same memory addresses

• Soon, it was noticed that I/O was much more time 
consuming than processing, hence the advent of 
multiprogramming
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Multiprogramming: issues in memory 
management

• Multiprogramming
– Several programs are resident in main memory at the same 

time

– When one program executes and needs I/O, it relinquishes 
CPU to another program

• Some important questions from the memory 
management viewpoint:
– How is one program protected from another?

– How does one program ask for more memory?

– How can a program be loaded in main memory?
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Multiprogramming: early implementations

• Programs are compiled and linked wrt to address 0
• Addresses that are generated by the CPU need to be 

modified
– A generated address is a virtual address
– The virtual address is translated into a real or physical 

address

• In early implementations, use of a base and length 
registers
– physical address = base register contents + virtual address

– if physical address > (base register contents + length 
register) then we have an exception
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Base register

Relocation and length registers

Program A

Program B

Unallocated

Unallocated

Program C

Length reg.

Program B is executing

Note; fragmentation 
(unallocated memory) gets 
worse as time goes on (more 
small pieces)

Program must be allocated in 
continuous memory locations

Still requires overlays for large 
programs
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Virtual memory: paging

• Basic idea first proposed and implemented at the 
University of Manchester in the early 60’s.

• Basic idea is to divide the virtual space into chunks of 
the same size, or (virtual) pages and divide also the 
physical memory into physical pages or frames

• Provide a general (fully-associative) mapping 
between virtual pages and frames
– This is a relocation mechanism whereby any virtual page 

can be stored in any physical frame
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Paging and segmentation

• Division in equal size pages is arbitrary
– division in segments corresponding to semantic entities 

(objects), e.g., function text, data arrays etc. may make more 
sense but…

– implementation of segments of different sizes is not as easy 
(although it has been done, most notably in the Burroughs 
series of machines)

• Nowadays, segmentation has the connotation of 
groups of pages
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Paging

• Allows virtual address space larger than physical 
memory
– recall that the stack starts at the largest possible virtual 

address and grows towards lower addresses while code 
starts at low addresses

• Allows sharing of physical memory between 
programs (multiprogramming) without as much 
fragmentation 
– physical memory allocated to a program does not need to be 

contiguous; only an integer number of pages

• Allows sharing of pages between programs (not 
always simple, cf. CSE 451)
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Illustration of paging
Program A

Program B

Physical memory
V.p.0

V.p.0

V.p.1

V.p.1

V.p.2

V.p.2

V.p.3

V.p.n

V.p.q

Frame 0
Frame 1
Frame 2

Frame m

Note: In general n, q >> 
m

Programs A and B 
share frame 0 but with 
different virtual page 
numbers

Not all virtual pages of a 
program are mapped at 
a given time

Mapping device
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Mapping device: Page table

• Mapping info. for each program is kept in a page table
• A page table entry (PTE) indicates the mapping of the 

virtual page to the physical page
• A valid bit indicates whether or not the mapping is 

current
• If there is a memory reference (recall that a reference is 

a virtual address) to a page with the valid bit off in its 
corresponding PTE, we have a page fault
– this means we’ll have to go to disk to fetch the page

• The PTE also contains a dirty bit to indicate whether the 
page has been modified since it was fetched

12/1/2004 CSE378 Virtual memory. 10

Illustration of page table
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From virtual address to memory location 
(highly abstracted)

ALU

Virtual address

Page 
table

Physical address

Memory 
hierarchy

12/1/2004 CSE378 Virtual memory. 12

Virtual address translation

• Page size is always a power of 2
– Typical page sizes: 4 KB, 8 KB

• A virtual address consists of a virtual page number
and an offset within the page
– For example, with a 4KB page size the virtual address will 

have a page number and an offset between 0 and 4K -1
– By analogy with a fully-associative cache, the offset is the 

displacement field, the virtual page number is the tag.
– Thus for a 4KB page, offset will be 12 bits and virtual page 

number is 20 bits

• The physical address will have a frame number and 
the same offset as the virtual address it is translated 
from
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Virtual address translation (continued)

1

Virtual page number Offset

OffsetPhysical frame 
number

Page table
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Paging system summary (so far)

• Addresses generated by the CPU are virtual 
addresses

• In order to access the memory hierarchy, these 
addresses must be translated into physical 
addresses

• That translation is done on a program per program 
basis. Each program must have its own page table

• The virtual address of program A and the same 
virtual address in program B will, in general, map to 
two different physical addresses
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Page faults

• When a virtual address has no corresponding 
physical address mapping (valid bit is off in the PTE) 
we have a page fault

• On a page fault (a page fault is an exception)
– the faulting page must be fetched from disk (takes 

milliseconds)

– the whole page (e.g., 4 or 8KB ) must be fetched (amortize 
the cost of disk access)

– because the program is going to be idle during that page 
fetch, the CPU better be used by another program. On a 
page fault, the state of the faulting program is saved and the 
O.S. takes over. This is called context-switching
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Page size choices

• Small pages (e.g., 512 bytes in the Vax)
– Pros: takes less time to fetch from disk but as we’ll see 

fetching a page of size 2x takes less than twice the time of 
fetching a page of size x; better utilization of pages (less 
fragmentation)

– Con: page tables are large but one can use multilevel pages

• Large pages. Pros and cons converse from small 
pages

• Current trends
– Page size 4 KB or 8KB.

– Possibility of two pages sizes, one normal (4KB) and one 
very large, e.g. 256KB for applications such as graphics.
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Top level questions relative to paging 
systems

• When do we bring a page in main memory?
• Where do we put it?

• How do we know it’s there?
• What happens if main memory is full?
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Top level answers relative to paging 
systems

• When do we bring a page in main memory?
– When there is a page fault for that page, i.e., on demand

• Where do we put it?
– No restriction; mapping is fully-associative

• How do we know it’s there?
– The corresponding PTE entry has its valid bit on

• What happens if main memory is full
– We have to replace one of the virtual pages currently 

mapped. Replacement algorithms can be sophisticated (cf. 
CSE 451) since we have a context-switch and hence plenty 
of time


