
1

10/27/2004 CSE378 Performance. 1

Performance of computer systems

• Many different factors among which:
– Technology

• Raw speed of the circuits (clock, switching time)

• Process technology (how many transistors on a chip)

– Organization
• What type of processor (e.g., RISC vs. CISC)

• What type of memory hierarchy

• What types of I/O devices

– How many processors in the system
– Software

• O.S., compilers, database drivers etc

10/27/2004 CSE378 Performance. 2

Moore’s Law

Courtesy Intel Corp.

10/27/2004 CSE378 Performance. 3

Processor-Memory Performance Gap

10

100

1000

1
89 91 93 95 97 99 01

• x Memory latency decrease (10x over 8 years but densities have
increased 100x over the same period)

• o x86 CPU speed (100x over 10 years)

“Memory gap”

“Memory wall”

x x

x
x x

x
o

o

o
o

o

386

Pentium

Pentium Pro
Pentium III

Pentium IV

10/27/2004 CSE378 Performance. 4

What are some possible metrics

• Raw speed (peak performance = clock rate)
• Execution time (or response time): time to execute

one (suite of) program from beginning to end.
– Need benchmarks for integer dominated programs,

scientific, graphical interfaces, multimedia tasks, desktop
apps, utilities etc.

• Throughput (total amount of work in a given time)
– measures utilization of resources (good metric when many

users: e.g., large data base queries, Web servers)

• Quite often improving execution time will improve
throughput and vice-versa

10/27/2004 CSE378 Performance. 5

Execution time Metric

• Execution time: inverse of performance
Performance A = 1 / (Execution_time A)

• Processor A is faster than Processor B
Execution_time A < Execution_time B
Performance A > Performance B

• Relative performance
PerformanceA / PerformanceB =Execution_timeB / Execution_timeA

10/27/2004 CSE378 Performance. 6

Measuring execution time

• Wall clock, response time, elapsed time
• Some systems have a “time” function

– Unix 13.7u 23.6s 18:37 3% 2069+1821k 13+24io 62pf+0w

• Difficult to make comparisons from one system to
another because of too many factors

• Remainder of this lecture: CPU execution time
– Of interest to microprocessors vendors and designers

2

10/27/2004 CSE378 Performance. 7

Definition of CPU execution time

CPU execution_time = CPU clock_cycles*clock
cycle_time

• CPU clock_cycles is program dependent thus
CPU execution_time is program dependent

• clock cycle_time (nanoseconds, ns) depends on the
particular processor

• clock cycle_time = 1/ clock cycle_rate (rate in MHz)
– clock cycle_time = 1µs, clock cycle_rate = 1 MHz
– clock cycle_time = 1ns, clock cycle_rate = 1 GHz

• Alternate definition
CPU execution_time = CPU clock_cycles / clock cycle_rate

10/27/2004 CSE378 Performance. 8

CPI -- Cycles per instruction

• Definition: CPI average number of clock cycles per instr.
CPU clock_cycles = Number of instr. * CPI
CPU exec_time = Number of instr. * CPI *clock cycle_time
• Computer architects try to minimize CPI

– or maximize its inverse IPC : number of instructions per cycle

• CPI in isolation is not a measure of performance
– program dependent, compiler dependent
– but good for assessing architectural enhancements (experiments

with same programs and compilers)

• In an ideal pipelined processor (to be seen soon) CPI =1
– but… not ideal so CPI > 1
– could have CPI <1 if several instructions execute in parallel

(superscalar processors)

10/27/2004 CSE378 Performance. 9

Classes of instructions
• Some classes of instr. take longer to execute than

others
– e.g., floating-point operations take longer than integer

operations

• Assign CPI’s per classes of inst., say CPIi
CPU exec_time = Σ (CPIi *Ci)* clock cycle_time
where Ci is the number of insts. of class i that have been

executed

• Note that minimizing the number of instructions does
not necessarily improve execution time

• Improving one part of the architecture can improve
the CPI of one class of instructions
– One often talks about the contribution to the CPI of a class of

instructions
10/27/2004 CSE378 Performance. 10

How to measure the average CPI

CPU exec_time = Number of instr. * CPI *clock cycle_time

• Count instructions executed in each class
• Needs a simulator

– interprets every instruction and counts their number

• or a profiler
– discover the most often used parts of the program and

instruments only those

– or use sampling

• Use of programmable hardware counters
– modern microprocessors have this feature but it’s limited

Elapsed time: wall clock
A given of the
processor

10/27/2004 CSE378 Performance. 11

Other popular performance measures:
MIPS

• MIPS (Millions of instructions per second)
MIPS = Instruction count / (Exec.time * 106)

MIPS = (Instr. count * clock rate)/(Instr. count *CPI * 106)

MIPS = clock rate /(CPI * 106)

• MIPS is a rate: the higher the better
• MIPS in isolation no better than CPI in isolation

– Program and/or compiler dependent

– Does not take the instruction set into account

– can give “wrong” comparative results

10/27/2004 CSE378 Performance. 12

Other metric: MFLOPS

• Similar to MIPS in spirit
• Used for scientific programs/machines

• MFLOPS: million of floating-point ops/second

3

10/27/2004 CSE378 Performance. 13

Benchmarks

• Benchmark: workload representative of what a system will be
used for

• Industry benchmarks
– SPECint and SPECfp industry benchmarks updated every few

years, Currently SPEC CPU2000

– Linpack (Lapack), NASA kernel: scientific benchmarks

– TPC-A, TPC-B, TPC-C and TPC-D used for databases and data
mining

– Other specialized benchmarks (Olden for list processing, Specweb,
SPEC JVM98 etc…)

– Benchmarks for desktop applications, web applications are not as
standard

– Beware! Compilers are super optimized for the benchmarks

10/27/2004 CSE378 Performance. 14

How to report (benchmark) performance

• If you measure execution times use arithmetic
mean
– e.g., for n benchmarks

(Σexec_timei) / n
• If you measure rates use harmonic mean

n/ (Σ 1/ratei) = 1/(arithmetic mean)

10/27/2004 CSE378 Performance. 15

Computer design: Make the common
case fast

• Amdahl’s law (speedup)
• Speedup = (performance with

enhancement)/(performance base case)
Or equivalently,
Speedup = (exec.time base case)/(exec.time with

enhancement)
• For example, application to parallel processing

– s fraction of program that is sequential
– Speedup S is at most 1/s
– That is if 20% of your program is sequential the maximum speedup

with an infinite number of processors is at most 5

