Drawbacks of single cycle implementation

« Allinstructions take the same time although
— some instructions are longer than others;

« e.g. load is longer than add since it has to access data memory
in addition to all the other steps that add does

— thus the “cycle” has to be for the “longest path”
« Some combinational units must be replicated since
used in the same cycle
— e.g., ALU for computing branch address and ALU for
computing branch outcome

« but this is no big deal (these duplicate resources will be needed
when we will pipeline instructions)

10/27/2004 CSE378 Multicycle impl,. 1

Alternative to single cycle

» Have a shorter cycle and instructions execute in
multiple (shorter) cycles

» The (shorter) cycle time determined by the longest

delay in individual functional units (e.g., memory or

ALU etc.)

Possibility to streamline some resources since they

will be used at different cycles

* Since there is need to keep information “between
cycles”, we'll need to add some stable storage
(registers) not visible at the ISA level

* Not all instructions will require the same number of

cycles
10/27/2004 CSE378 Multicycle impl,

Multiple cycle implementation

« Follows the decomposition of the steps for the
execution of instructions
— Cycle 1. Instruction fetch and increment PC

— Cycle 2. Instruction decode and read source registers and
branch address computation

Cycle 3. ALU execution or memory address calculation or
set PC if branch successful

— Cycle 4. Memory access (load/store) or write register
(arith/log)

— Cycle 5 Write register (load)
« Note that branch takes 3 cycles, load takes 5 cycles,
all others take 4 cycles

10/27/2004 CSE378 Multicycle impl,. 3

Instruction fetch

» Because fields in the instruction are needed at
different cycles, the instruction has to be kept in
stable storage, namely an Instruction Register (IR)

» The register transfer level actions during this step

IR — Memory[PC]

PC « PC+4

* Resources required

— Memory (but no need to distinguish between instruction and
data memories; later on we will because the need will
reappear when we pipeline instructions)

— Adder to increment PC

- IR

10/27/2004 CSE378 Multicycle impl,

Instruction decode and read source
registers

« Instruction decode: send opcode to control unit
and...(see later)
« Perform “optimistic” computations that are not
harmful
— Read rs and rt and store them in non-ISA visible registers A
and B that will be used as input to ALU
A ~ REG[IR[25:21]] (read rs)
B — REG[IR[20:16]] (read rt)
— Compute the branch address just in case we had a branch!
ALUout — PC +(sign-ext(IR[15:0]) *4 (ALUout is also a non-
ISA visible register)
* New resources
— A, B, ALUout
10/27/2004 CSE378 Multicycle impl,. 5

ALU execution

If instruction is R-type
ALUout —~Aop. B
If instruction is Immediate
ALUout —A op. sign-extend(IR[15:0])
« If instruction is Load/Store
ALUout — A + sign-extend(IR[15:0])
« If instruction is branch

If (A=B) then PC ~ ALUout (note this is the ALUout computed
in the previous cycle)

* No new resources

10/27/2004 CSE378 Multicycle impl, 6

Memory access or ALU completion

e If Load

MDR — Memory[ALUout] (MDR is the Memory Data Register
non-ISA visible register)

« |If Store
Memory[ALUout] — B
e [farith
Reg[IR[15:11]] — ALUout
* New resources
— MDR

10/27/2004 CSE378 Multicycle impl,. 7

Load completion

» Write result register
Reg[IR[20:16]] — MDR

10/27/2004 CSE378 Multicycle impl, 8

Streamlining of resources

« No distinction between instruction and data memory
« Only one ALU
< But a few more muxes and registers (IR, MDR etc.)

10/27/2004 CSE378 Multicycle impl,. 9

FloorPlan for Multicycle MIPS

peie=f0 Insiruction
o 1o adsrers 125-21)

5 Instruction
Memory 120-15]

st 187 nginuction
1150

Instruction
register

ALLIDu

10/27/2004 CSE378 Multicycle impl, 10

Control Unit for Multiple Cycle
Implementation

« Control is more complex than in single cycle since:
— Need to define control signals for each step
— Need to know which step we are on

« Two methods for designing the control unit

— Finite state machine and hardwired control (extension of the
single cycle implementation)
— Microprogramming (read the book about it)

10/27/2004 CSE378 Multicycle impl,. 11

What are the control signals needed?

» Let's look at control signals needed at each of 5
steps
» Signals needed for
— reading/writing memory
— reading/writing registers
— control the various muxes

— control the ALU (recall how it was done for single cycle
implementation)

10/27/2004 CSE378 Multicycle impl, 12

Control Signals for Multicycle MIPS

o) MamPsad et (Vi sl Paghnts ALUSTEA
Lt Fad @
u | Addrass [25-21] e TR .
: ot - L
S| Memery [20-18] L 2 1 F
Instrugtien " Registers. ALY ALy ALUD
115-0] "mwﬂm U e " = result
Weitn iS11] | X | |femlter TR0 (]
dala Ingtruction v m
rogister 5 Wit i
- aia x
ngiructan | 3
1155 H
e -
Momary 6 | sign | 2] () p
L dom A |
e | ona [~ oz focarl
Ingtructian 1507
I 1
Mrentortag AUSRE ALLOR
10/27/2004 CSE378 Multicycle impl,. 13

Complete Multi-cycle MIPS

! powngons POSauros

POV | s | ALUCp
o

ALusns
MemAuat | Conirol

matructon (5-0|

10/27/2004 CSE378 Multicycle impl, 14

Instruction fetch

* Need to read memory
— Choose input address (mux with signal lorD = 0)
— Set MemRead signal
— Set IRwrite signal (note that there is no write signal for MDR;

Why?)

« Set sources for ALU
— Source 1: mux set to “come from PC” (signal ALUSrcA = 0)
— Source 2: mux set to “constant 4” (signal ALUSrcB = 01)

¢ Set ALU control to “+” (e.g., ALUop = 00 and don’t
care for the function bits)

10/27/2004 CSE378 Multicycle impl,. 15

Instruction fetch (PC increment)

» Set the mux to store in PC as coming from ALU
(signal PCsource = 01)
* Set PCwrite

— Note: this could be wrong if we had a branch but it will be
overwritten in that case; see step 3 of branch instructions

10/27/2004 CSE378 Multicycle impl, 16

Instruction decode and read source
registers

* Read registers in Aand B
— No need for control signals. This will happen at every cycle.
No problem since neither IR (giving names of the registers)
nor the registers themselves are modified. When we need A
and B as sources for the ALU, e.g., in step 3, the muxes will
be set accordingly
« Branch target computations. Select inputs for ALU
— Source 1: mux set to “come from PC” (signal ALUSrcA = 0)
— Source 2: mux set to “come from IR, sign-extended, shifted
left 2” (signal ALUSrcB = 11)

« Set ALU control to “+” (ALUop = 00)

10/27/2004 CSE378 Multicycle impl,. 17

Concept of “state”

During steps 1 and 2, all instructions do the same
thing
« At step 3, opcode is directing

— What control lines to assert (it will be different for a load, an
add, a branch etc.)

— What will be done at subsequent steps (e.g., access
memory, writing a register, fetching the next instruction)
» At each cycle, the control unit is put in a specific state
that depends only on the previous state and the
opcode

— (current state, opcode) - (next state) Finite state machine
(cf. CSE370, CSE 322)

10/27/2004 CSE378 Multicycle impl, 18

The first two states

« Since the data flow and the control signals are the
same for all instructions in step 1 (instr. fetch) there is
only one state associated with step 1, say state 0

« And since all operations in the next step are also
always the same, we will have the transition
— (state 0, all) —~ (state 1)

10/27/2004 CSE378 Multicycle impl,. 19

Customary notation

Instruction decode and
read source registers

(state 1)

Instruction fetch

(state 0)

Memread
ALUSIcA =0
loD=0

ALUSIcA =0
ALUsrcB = 11

No label becausetransition| ~ ALUop =00
is always taken

S

10/27/2004 CSE378 Multicycle impl,

Irwrite

ALUsrcB =01

ALUop =00
Powrite
Pesource = 00

20

Transitions from State 1

« After the decode, the data flow depends on the type
of instructions:

Register-Register : Needs to compute a result and store it

— Load/Store: Needs to compute the address, access memory,
and in the case of a load write the result register

Branch: test the result of the condition and, if need be,
change the PC

Jump: need to change the PC
— Immediate: Not shown in the figures. Do it as an exercise

10/27/2004 CSE378 Multicycle impl,. 21

State transitions from State 1

Sate0 Satel

10/27/2004 CSE378 Multicycle impl, 22

State 2: Memory Address Computation

* Set sources for ALU

— Source 1: mux set to “come from A" (signal ALUSIcA = 1)

— Source 2: mux set to “imm. extended” (signal ALUSrcB = 10)
« Set ALU control to “+” (ALUop = 00)
* Transition from State 2

— If we have a “load” transition to State 3

— If we have a “store” transition to State 5

10/27/2004 CSE378 Multicycle impl,. 23

State 2: Memory address computation

ALUSICcA =1
ALUSIcB = 10
ALUop =00

State 2

Opcode “load” Opcode “ store”

State
State 5

10/27/2004 CSE378 Multicycle impl, 24

One more example: State 5 --Store

The control signals are:
— Set mux for address as coming from ALUout (lorD = 1)
— Set MemWrite
— Note that what has to be written has been sitting in B all that
time (and was rewritten, unmodified, at every cycle).
« Since the instruction is completed, the transition from
State 5 is always to State O to fetch a new instruction.

— (State 5, always) - (State 0)

10/27/2004 CSE378 Multicycle impl,. 25

Multiple Cycle
Implementation

¢ Immediate
instructions
are not here

CSE378 Multicycle impl, 2

Hardwired implementation of the control
unit

« Single cycle implementation:
— Input (Opcode) = Combinational circuit (PAL) = Output
signals (data path)
— Input (Opcode + function bits) = ALU control
« Multiple cycle implementation
— Need to implement the finite state machine
— Input (Opcode + Current State -- stable storage) =
Combinational circuit (PAL) = Output signals (data path +
setting next state)
— Input (Opcode + function bits + Current State) = ALU control

10/27/2004 CSE378 Multicycle impl,. 27

10/27/2004
H “" H ”
Hardwired “diagram
Combinational
control logic Daispain conlrel oulpuls
Outpuds { +———
Inputs | I
B
: : e
(T 1
T
rogister opcode fisld [} I L]
10/27/2004 CSE378 Multicycle impl, 28

