### **MIPS History**

- MIPS is a computer family
  - R2000/R3000 (32-bit); R4000/4400 (64-bit); R10000 (64-bit)
- MIPS originated as a Stanford research project under the direction of John Hennessy
- Microprocessor without Interlocked Pipe Stages
- MIPS Co. bought by SGI
- MIPS used in previous generations of DEC (then Compaq, now HP) workstations
- Now MIPS Technologies is in the embedded systems
- MIPS is a RISC

CSE378 MIPS ISA

ISA MIPS Registers

- Thirty-two 32-bit registers \$0,\$1,...,\$31 used for
  - integer arithmetic; address calculation; temporaries; specialpurpose functions (stack pointer etc.)
- A 32-bit Program Counter (PC)
- Two 32-bit registers (HI, LO) used for mult. and division
- Thirty-two 32-bit registers \$f0, \$f1,...,\$f31 used for floating-point arithmetic
  - Often used in pairs: 16 64-bit registers
- Registers are a major part of the "state" of a process

CSE378 MIPS ISA

#### MIPS Register names and conventions

| Register | Name    | Function                        | Comment                  |
|----------|---------|---------------------------------|--------------------------|
| \$0      | Zero    | Always 0                        | No-op on write           |
| \$1      | Sat     | Reserved for assembler          | Don't use it             |
| \$2-3    | \$v0-v1 | Expr. Eval/funct. Return        |                          |
| \$4-7    | \$20-23 | Proc./func. Call parameters     |                          |
| \$8-15   | \$10-17 | Temporaries; volatile           | Not saved on proc. Calls |
| \$16-23  | \$s0-s7 | Temporaries                     | Should be saved on calls |
| \$24-25  | \$18-19 | Temporaries; volatile           | Not saved on proc. Calls |
| \$26-27  | Sk0-k1  | Reserved for O.S.               | Don't use them           |
| \$28     | Sgp     | Pointer to global static memory |                          |
| \$29     | \$sp    | Stack pointer                   |                          |
| \$30     | Sfp     | Frame pointer                   |                          |
| \$31     | Sra     | Proc./funct return_address      |                          |

10/6/2004 CSE378 MIPS ISA

#### MIPS = RISC = Load-Store architecture

- Every operand must be in a register
  - Except for some small integer constants that can be in the instruction itself (see later)
- Variables have to be loaded in registers
- · Results have to be stored in memory
- Explicit Load and Store instructions are needed because there are many more variables than the number of registers

CSE378 MIPS ISA 10/6/2004

## Example

· The HLL statements

a = b + c

d = a + b

• will be "translated" into assembly language as:

load b in register rx load c in register ry

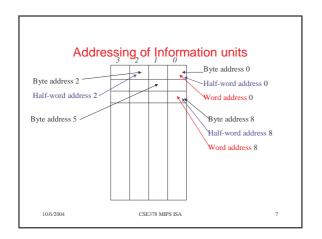
rz <- rx + ry

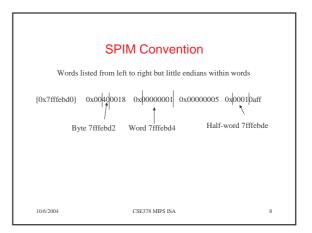
store rz in a

# not destructive; rz still contains the value of a

rt <- rz + rx

store rt in d


CSE378 MIPS ISA 10/6/2004


## MIPS Information units

- · Data types and size:

  - ByteHalf-word (2 bytes)
  - Word (4 bytes)
  - Float (4 bytes; single precision format)
  - Double (8 bytes; double-precision format)
- Memory is byte-addressable A data type must start at an address evenly divisible
- by its size (in bytes) In the little-endian environment, the address of a data type is the address of its lowest byte

CSE378 MIPS ISA





## Assembly Language programming or How to be nice to your TAs

- · Use lots of detailed comments
- Don't be too fancy
- · Use lots of detailed comments
- Use words (rather than bytes) whenever possible
- Use lots of detailed comments
- Remember: The word's address evenly divisible by 4
- Use lots of detailed comments
- The word following the word at address i is at address i+4
- Use lots of detailed comments
   CSE378 MIRS ISA

#### MIPS Instruction types

- Few of them (RISC philosophy)
- Arithmetic
  - Integer (signed and unsigned); Floating-point
- Logical and Shift
  - work on bit strings
- Load and Store
  - for various data types (bytes, words,...)
- Compare (of values in registers)
- Branch and jumps (flow of control)
  - Includes procedure/function calls and returns

10/6/2004

10

## Notation for SPIM instructions

- Opcode rd, rs, rtOpcode rt, rs, immed
- where
  - rd is always a destination register (result)
  - rs is always a source register (read-only)
  - rt can be either a source or a destination (depends on the opcode)
  - immed is a 16-bit constant (signed or unsigned)

10/6/2004 CSE378 MIPS ISA 11

#### Arithmetic instructions in SPIM

CSE378 MIPS ISA

• Don't confuse the SPIM format with the "encoding" of instructions that we'll see soon

 Opcode
 Operands
 Comments

 Add
 rd,rs,rt
 #rd = rs + rt

 Addi
 rt,rs,immed
 #rt = rs + immed

 Sub
 rd,rs,rt
 #rd = rs - rt

10/6/2004 CSE378 MIPS ISA 12

|           | Examples        |                 |
|-----------|-----------------|-----------------|
| Add       | \$8,\$9,\$10    | #\$8=\$9+\$10   |
| Add       | \$t0,\$t1,\$t2  | #\$t0=\$t1+\$t2 |
| Sub       | \$s2,\$s1,\$s0  | #\$s2=\$s1-\$s0 |
|           |                 |                 |
| Addi      | \$a0,\$t0,20    | #\$a0=\$t0+20   |
| Addi      | \$a0,\$t0,-20   | #\$a0=\$t0-20   |
|           |                 |                 |
| Addi      | \$t0,\$0,0      | #clear \$t0     |
| Sub       | \$t5,\$0,\$t5   | #\$t5 = -\$t5   |
| 10/6/2004 | CSE378 MIPS ISA | 13              |

## Integer arithmetic

- Numbers can be signed or unsigned
- Arithmetic instructions (+,-,\*,/) exist for both signed and unsigned numbers (differentiated by Opcode)
  - Example: Add and Addu

Addi and Addiu

Mult and Multu

- Signed numbers are represented in 2's complement
- For Add and Subtract, computation is the same but
  - Add, Sub, Addi cause exceptions in case of overflow

14

- Addu, Subu, Addiu don't

10/6/2004 CSE378 MIPS ISA

# How does the CPU know if the numbers are signed or unsigned?

- It does not!
- You do (or the compiler does)
- You have to tell the machine by using the right instruction (e.g. Add or Addu)

10/6/2004

CSE378 MIPS ISA