
1

10/6/2004 CSE378 Gen. Intro 1

What is Computer Architecture?

It’s the study of the ___________ of computers
• Structure: static arrangement of the parts

• Organization: dynamic interaction of the parts and
their control

• Implementation: design of specific building blocks
• Performance: behavioral study of the system or of

some of its components

10/6/2004 CSE378 Gen. Intro 2

Another definition: Instruction Set
Architecture (ISA)

• Architecture is an interface between layers
• ISA is the interface between hardware and software

• ISA is what is visible to the programmer (and ISA
might be different for O.S. and applications)

• ISA consists of:
– instructions (operations and how they are encoded)

– information units (size, how they are addressed etc.)

– registers (or more generally processor state)

– input-output control

10/6/2004 CSE378 Gen. Intro 3

Computer structure: Von Neumann model

Memory
hierarchy

I/Ocontrol ALU

Registers
PC

state

Memory
bus

I/O bus

CPU
Data path +

Control

10/6/2004 CSE378 Gen. Intro 4

Computer Organization

• Organization and architecture often used as
synonyms

• Organization (in this course) refers to:
– what are the basic blocks of a computer system, more

specifically
• basic blocks of the CPU

• basic blocks of the memory hierarchy

– how are the basic blocks designed, controlled, connected?

• Organization used to be transparent to the ISA.

• Today more and more of the ISA is “exposed” to the
user/compiler.

10/6/2004 CSE378 Gen. Intro 5

Advances in technology

Processor
technology

Vacuum
tubes

TransistorsIntegrated
circuits

VLSI

Memory
technology

Vacuum
tubes

Ferrite
core

Semi-
conductor

Semi-
conductor

Processor
structure

Single
processor

Main
frames

Micros
and minis

PC’s
64-bit arch
Superscalar
Multithreaded

10/6/2004 CSE378 Gen. Intro 6

Illustration of Moore’s Law

2

10/6/2004 CSE378 Gen. Intro 7

Power Dissipation

10/6/2004 CSE378 Gen. Intro 8

Evolution of Intel Microprocessor Speeds

0

500

1000

1500

2000

2500

3000

3500

4000

1971 1974 1979 1982 1985 1989 1993 1997 1998 1999 2000 2001 2002 2003

Year

S
p

ee
d

 (
M

H
z)

10/6/2004 CSE378 Gen. Intro 9

Some Computer families

• Computers that have the same (or very similar) ISA
– Compatibility of software between various implementations

• IBM
– 704, 709, 70xx etc.. From 1955 till 1965

– 360, 370, 43xx, 33xx From 1965 to the present

– Power PC

• DEC
– PDP-11, VAX From 1970 till 1985

– Alpha (now Compaq, now HP) in 1990’s

10/6/2004 CSE378 Gen. Intro 10

More computer families

• Intel
– Early micros 40xx in early 70’s

– x86 (086,…,486, Pentium, Pentium Pro, Pentium 3, Pentium
4) from 1980 on

– IA-64 (Itanium) in 2001

• SUN
– Sparc, Ultra Sparc 1985 0n

• MIPS-SGI
– Mips 2000, 3000, 4400, 10000 from 1985 on

10/6/2004 CSE378 Gen. Intro 11

MIPS is a RISC

• RISC = Reduced Instruction Set Computer
• R could also stand for “regular”

• All arithmetic-logical instructions are of the form

• MIPS (as all RISC’s) is a Load-Store architecture
– ALU operates only on operands that are in registers
– The only instructions accessing memory are load and store

c ba Rop R R ←

10/6/2004 CSE378 Gen. Intro 12

Registers

• Registers are the “bricks” of the CPU
• Registers are an essential part of the ISA

– Visible to the hardware and to the programmer

• Registers are
– Used for high speed storage for operands. For example, if

variables a,b,c are in registers 8,9,10 respectively
add $8,$9,$10 # a = b + c

– Easy to name (most computers have 32 registers visible to
the programmer and their names are 0, 1, 2, …,31)

– Used for addressing memory

3

10/6/2004 CSE378 Gen. Intro 13

Registers (ct’d)

• Not all registers are “equal”
– Some are special-purpose (e.g., register 0 in MIPS is wired

to the value 0)
– Some are used for integer and some for floating-point (e.g.,

32 of each in MIPS)
– Some have restricted use by convention (cf. App. A pp A-22-

23)
– Why no more than 32 or 64 registers

• Well, sometimes there is (SPARC, Itanium, Cray, Tera)
• Smaller is faster
• Instruction encoding (names have to be short)
• There can be more registers but they are invisible to the ISA

– this is called register renaming (see CSE 471)

10/6/2004 CSE378 Gen. Intro 14

Memory system

• Memory is a hierarchy of devices with faster and
more expensive ones closer to CPU
– Registers

– Caches (hierarchy: on-chip, off-chip)

– Main memory (DRAM)

– Secondary memory (disks)

10/6/2004 CSE378 Gen. Intro 15

Information units

• Basic unit is the bit (has value 0 or 1)
• Bits are grouped together in units and operated on

together:
– Byte = 8 bits

– Word = 4 bytes

– Double word = 2 words

– etc.

10/6/2004 CSE378 Gen. Intro 16

Memory addressing

• Memory is an array of information units
– Each unit has the same size

– Each unit has its own address

– Address of an unit and contents of the unit at that address
are different

address

0
1
2

-123
17
0

contents

10/6/2004 CSE378 Gen. Intro 17

Addressing

• In most of today’s computers, the basic unit that can
be addressed is a byte
– MIPS is byte addressable

• The address space is the set of all I-units that a
program can reference
– The address space is tied to the length of the registers

– MIPS has 32-bit registers. Hence its address space is 4G
bytes

– Older micros (minis) had 16-bit registers, hence 64 KB
address space (too small)

– Some current (Alpha, Itanium, Sparc, Altheon) machines
have 64-bit registers, hence an enormous address space

10/6/2004 CSE378 Gen. Intro 18

Addressing words

• Although machines are byte-addressable, words are
the most commonly used units

• Every word starts at an address divisible by 4

Word at address 0

Word at address 4

Word at address 8

4

10/6/2004 CSE378 Gen. Intro 19

Big-endian vs. little endian

• Byte order within a word:

0

0

123

1 2 3

Little-endian
(we’ ll use this)

Big-endian

10/6/2004 CSE378 Gen. Intro 20

The CPU - Instruction Execution Cycle

• The CPU executes a program by repeatedly following
this cycle
1. Fetch the next instruction, say instruction i

2. Execute instruction i

3. Compute address of the next instruction, say j

4. Go back to step 1

• Of course we’ll optimize this but it’s the basic concept

10/6/2004 CSE378 Gen. Intro 21

What’s in an instruction?

• An instruction tells the CPU
– the operation to be performed via the OPCODE
– where to find the operands (source and destination)

• For a given instruction, the ISA specifies
– what the OPCODE means (semantics)

– how many operands are required and their types, sizes
etc.(syntax)

• Operand is either
– register (integer, floating-point, PC)

– a memory address

– a constant

