
1

5/20/2004 CSE378 Virtual memory. 1

Evolution in memory management techniques

• In early days, single program ran on the whole machine
– used all the memory available

• Even so, there was often not enough memory to hold data 
and program for the entire run
– use of overlays, i.e., static partitioning of program and data so that 

parts that were not needed at the same time could share the same
memory addresses

• Soon, it was noticed that I/O was much more time 
consuming than processing, hence the advent of 
multiprogramming

5/20/2004 CSE378 Virtual memory. 2

Multiprogramming: issues in memory 
management

• Multiprogramming
– Several programs are resident in main memory at the same time

– When one program executes and needs I/O, it relinquishes CPU to 
another program

• Some important questions from the memory management 
viewpoint:
– How is one program protected from another?

– How does one program ask for more memory?

– How can a program be loaded in main memory?

5/20/2004 CSE378 Virtual memory. 3

Multiprogramming: early implementations

• Programs are compiled and linked wrt to address 0

• Addresses that are generated by the CPU need to be 
modified
– A generated address is a virtual address

– The virtual address is translated into a real or physical address

• In early implementations, use of a base and length registers
– physical address = base register contents + virtual address

– if physical address > (base register contents + length register) then 
we have an exception

5/20/2004 CSE378 Virtual memory. 4

Relocation and length registers

Program A

Program B

Unallocated

Unallocated

Program C

Base register

Length reg.

Program B is executing

Note; fragmentation (unallocated 
memory) gets worse as time goes 
on (more small pieces)

Program must be allocated in 
continuous memory locations

Still requires overlays for large 
programs

5/20/2004 CSE378 Virtual memory. 5

Virtual memory: paging

• Basic idea first proposed and implemented at the 
University of Manchester in the early 60’s.

• Basic idea is to divide the virtual space into chunks of the 
same size, or (virtual) pages and divide also the physical
memory into physical pages or frames

• Provide a general (fully-associative) mapping between 
virtual pages and frames
– This is a relocation mechanism whereby any virtual page can be 

stored in any physical frame

5/20/2004 CSE378 Virtual memory. 6

Paging and segmentation

• Division in equal size pages is arbitrary
– division in segments corresponding to semantic entities (objects), 

e.g., function text, data arrays etc. may make more sense but…

– implementation of segments of different sizes is not as easy 
(although it has been done, most notably in the Burroughs seriesof 
machines)

• Nowadays, segmentation has the connotation of groups of 
pages



2

5/20/2004 CSE378 Virtual memory. 7

Paging

• Allows virtual address space larger than physical memory
– recall that the stack starts at the largest possible virtual address and 

grows towards lower addresses while code starts at low addresses

• Allows sharing of physical memory between programs 
(multiprogramming) without as much fragmentation 
– physical memory allocated to a program does not need to be 

continuous; only an integer number of pages

• Allows sharing of pages between programs (not always 
simple, cf. CSE 451)

5/20/2004 CSE378 Virtual memory. 8

Illustration of paging
Program A

Program B

Physical memory
V.p.0

V.p.0

V.p.1

V.p.1

V.p.2

V.p.2

V.p.3

V.p.n

V.p.q

Frame 0
Frame 1
Frame 2

Frame m

Note: In general n, q >> m

Programs A and B share 
frame 0 but with different 
virtual page numbers

Not all virtual pages of a 
program are mapped at a 
given time

Mapping device

5/20/2004 CSE378 Virtual memory. 9

Mapping device: Page table

• Mapping info. for each program is kept in a page table

• A page table entry (PTE) indicates the mapping of the 
virtual page to the physical page

• A valid bit indicates whether the mapping is current or not

• If there is a memory reference (recall that a reference is a 
virtual address) to a page with the valid bit off in its 
corresponding PTE, we have a page fault
– this means we’ ll have to go to disk to fetch the page

• The PTE also contains a dirty bit to indicate whether the 
page has been modified since it was fetched

5/20/2004 CSE378 Virtual memory. 10

Illustration of page table
Program A

Program B

Physical memory
V.p.0

V.p.0

V.p.1

V.p.1

V.p.2

V.p.2

V.p.3

V.p.n

V.p.q

Frame 0
Frame 1
Frame 2

Frame m

1
1
0

1

2
m

0

Page table for 
Program A

Valid bits

Page table for 
Program B

0
1

1 1

0

5/20/2004 CSE378 Virtual memory. 11

From virtual address to memory location 
(highly abstracted)

ALU

Virtual address

Page 
table

Physical address

Memory 
hierarchy

5/20/2004 CSE378 Virtual memory. 12

Virtual address translation

• Page size is always a power of 2
– Typical page sizes: 4 KB, 8 KB

• A virtual address consists of a virtual page number and an 
offset within the page
– For example, with a 4KB page size the virtual address will have a 

page number and an offset between 0 and 4K -1
– By analogy with a fully-associative cache, the offset is the 

displacement field, the virtual page number is the tag.
– Thus for a 4KB page, offset will be 12 bits and virtual page 

number is 20 bits

• The physical address will have a frame number and the 
same offset as the virtual address it is translated from



3

5/20/2004 CSE378 Virtual memory. 13

Virtual address translation (ct’d)

1

Virtual page number Offset

OffsetPhysical frame number

Page table

5/20/2004 CSE378 Virtual memory. 14

Paging system summary (so far)

• Addresses generated by the CPU are virtual addresses

• In order to access the memory hierarchy, these addresses 
must be translated into physical addresses

• That translation is done on a program per program basis. 
Each program must have its own page table

• The virtual address of program A and the same virtual 
address in program B will, in general, map to two different 
physical addresses

5/20/2004 CSE378 Virtual memory. 15

Page faults

• When a virtual address has no corresponding physical 
address mapping (valid bit is off in the PTE) we have a 
page fault

• On a page fault (a page fault is an exception)
– the faulting page must be fetched from disk (takes milliseconds)

– the whole page (e.g., 4 or 8KB ) must be fetched (amortize the cost 
of disk access)

– because the program is going to be idle during that page fetch, the 
CPU better be used by another program. On a page fault, the state 
of the faulting program is saved and the O.S. takes over. This is 
called context-switching

5/20/2004 CSE378 Virtual memory. 16

Page size choices

• Small pages (e.g., 512 bytes in the Vax)
– Pros: takes less time to fetch from disk but as we’ ll see fetching a 

page of size 2x takes less than twice the time of fetching a page of 
size x; better utilization of pages (less fragmentation)

– Con: page tables are large but one can use multilevel pages

• Large pages. Pros and cons converse from small pages

• Current trends
– Page size 4 KB or 8KB.

– Possibility of two pages sizes, one normal (4KB) and one very 
large, e.g. 256KB for applications such as graphics.

5/20/2004 CSE378 Virtual memory. 17

Top level questions relative to paging systems

• When do we bring a page in main memory?

• Where do we put it?

• How do we know it’ s there?

• What happens if main memory is full

5/20/2004 CSE378 Virtual memory. 18

Top level answers relative to paging systems

• When do we bring a page in main memory?
– When there is a page fault for that page, i.e., on demand

• Where do we put it?
– No restriction; mapping is fully-associative

• How do we know it’ s there?
– The corresponding PTE entry has its valid bit on

• What happens if main memory is full
– We have to replace one of the virtual pages currently mapped. 

Replacement algorithmscan be sophisticated (cf. CSE 451) since 
we have a context-switch and hence plenty of time


