Levelsin Processor Design

¢ Circuit design
— Keywords: transistors, wires etc.Resultsin gates, flip-flops etc.
« Logical design
— Putting gates (AND, NAND, ...) and flip-flops together to build
basic blocks such as registers, ALU’s etc (cf. CSE 370)
* Register transfer

— Describes execution of instructions by showing data flow between
the basic blocks

¢ Processor description (the ISA)
« System description
— Includes memory hierarchy, I/0O, multiprocessing etc

4/16/2004 CSE378 Single cycle 1
implementation.

Register transfer level

» Two types of components (cf. CSE 370)
— Combinational : the output is afunction of the input (e.g., adder)
— Sequential: state is remembered (e.g., register)

4/16/2004 CSE378 Single cycle
implementation.

Synchronous design

* Useof aperiodic clock

— edge-triggered clocking determines when signals can be read and
when the output of circuitsis stable

— Vauesin storage elements can be updated only at clock edges

— Clock tellswhen events can occur, e.g., when signal's sent by
control unit are obeyed in the ALU

e Sorage demn
storage element can

be read/writtenin

Clock cycl
ocore ﬂ the same cycle

4/16/2004 CSE378 Single cycle 3
implementation.

Write signa Writeggnd

Logic may need several cyclesto propagate values
Truein designs today with very high clock

Processor design: data path and control unit

CPU

Combinational
Memory
hierarchy|

Registers «|

H—— Sequentia

Memory

bus Data path

4/16/2004 CSE378 Single cycle 5
implementation.

frequency
4/16/2004 CSE378 Single cycle
implementation.
Processor design
« Datapath

— How does data flow between various basic blocks
— Wheat operations can be performed when data flows
— What can be done in one clock cycle

 Control unit
— Sends signasto datapath elements

— Tellswhat datato move, where to move it, what operations are to
be performed

e Memory hierarchy
— Holds program and data

4/16/2004 CSE378 Single cycle
implementation.

Data path basic building blocks.
Storage elements

« Basic building block (at the RT level) is aregister
« Inour mini-MIPS implementation registers will be 32-bits
« A register can beread or written

Write enable signa

Output bus

4/16/2004 CSE378 Single cycle 7
implementation.

Register file

» Array of registers (32 for the integer registersin MIPS)
* |SA tellsusthat we should be able to:

— read 2 registers, write one register in agiven instruction (at this
point we want one instruction per cycle)

— Register file needs to know which registerthgd read/write

) register number bus 0
Write register number
| i Read register number bus 1

Read data output bus 0

Write data input bus Register file
f——— Read dataoutput bus 1
4/16/2004 CSE378 Single cycle 8
implementation.

Memory

« Conceptually, like register file but much larger

« Can only read one location or write to one location per
cycle
Write memory address
Write enable : j

Read memory address

[Rexdoonrolsignal

Write data bus——————| Memory | Readdaabus

4/16/2004 CSE378 Single cycle 9
implementation.

Combinational elements

Multiplexor (MUX): selects the value of one of its Input busses
inputs to be routed to the output j{

S—

Demultiplexor (deMUX or SEL): routesits input Output bus
to one of its outputs
Output busses

s conol sp

Input bus

4/16/2004 CSE378 Single cycle 10
implementation.

Arithmetic and Logic Unit (ALU -
combinational)

« Computes (arithmetic or logical operation) output from its
two inputs

Zero result bit
Input bus O
Output bus
Input bus 1
ALU control
(opcode/function)
4/16/2004 CSE378 Single cycle 11

implementation.

Putting basic blocks together (skeleton of data
path for arith/logical operations)

. Zero result bit
Write register number Read register number bus0

Write enable —— —l [I Read register number bus 1

Read data 0
Register file

Read dta 1 ALU control

(opcode/function)

Write data input bus

4/16/2004 CSE378 Single cycle 12
implementation.

Introducing instruction fetch s e oi

Read Reg #0
Read Reg #1
Write Reg #
Reg. File| Read data1 ALU control
F (opcode/function]
Write data

PC has to be incremented (assume no branch)

Instruction addr i
neruction e | Instr. memory Ipstruction

4/16/2004 CSE378 Single cycle 14
implementation.

Instruction address Instr. memory
4/16/2004 CSE378 Single cycle 13
implementation.
L oad-Store instructions
Read enable
Instruction l
Read data0
Read Reg #0
_ Read Reg #1 ALU
Write Reg # adaeata
memory
Reg. File I
“store” data
16-bit offset Write enable
Data from “load”
4/16/2004 CSE378 Single cycle 15
implementation.

Data path for straight code
(reg-reg,imm,load/store RTME

Instruction

Read Reg #0
N Read Reg #1
Write Reg #

Reg. File

@ 32-bit
16-bit offset W

“store’ data

Write enable

Datafor result register

4/16/2004 CSE378 Single cycle 16
implementation.

4116/2004

Branch data path

Instruction

CSE378 Single cycle 17

implementation.

