Drawbacks of single cycle implementation

« All instructions take the same time although
— someinstructions are longer than others;

« eg. load islonger than add since it has to access data memory in
addition to all the other steps that add does

— thusthe “cycle” has to be for the “longest path”
« Some combinational units must be replicated since used in
the same cycle
— eg., ALU for computing branch address and ALU for computing
branch outcome

« but thisis no big deal (these duplicate resources will be needed when
we will pipelineinstructions)

412212004 CSE378 Multicycleimpl, 1

Alternative to single cycle

» Haveashorter cycle and instructions execute in multiple
(shorter) cycles

» The (shorter) cycle time determined by the longest delay in
individual functional units (e.g., memory or ALU etc.)

* Possibility to streamline some resources since they will be
used at different cycles

» Sincethereis need to keep information “between cycles’,
we'll need to add some stable storage (registers) not visible
at the ISA level

e Not al instructions will require the same number of cycles

412212004 CSE378 Multicycleimpl,. 2

Multiple cycle implementation

« Follows the decomposition of the steps for the execution
of instructions
— Cycle 1. Instruction fetch and increment PC

— Cycle 2. Instruction decode and read source registers and branch
address computation

— Cycle 3. ALU execution or memory address calculation or set PC
if branch successful

— Cycle 4. Memory access (load/store) or write register (arith/log)
— Cycle 5 Write register (load)
« Note that branch takes 3 cycles, load takes 5 cycles, all
otherstake 4 cycles

412212004 CSE378 Multicycleimpl, 3

Instruction fetch

* Because fieldsin the instruction are needed at different
cycles, the instruction has to be kept in stable storage,
namely an Instruction Register (IR)

e Theregister transfer level actions during this step

IR — Memory[PC]

PC - PC+4

* Resources required

— Memory (but no need to distinguish between instruction and data
memories; |ater on we will because the need will reappear when
we pipeline instructions)

— Adder to increment PC

- IR

412212004 CSE378 Multicycleimpl,. 4

Instruction decode and read source registers

« Instruction decode: send opcode to control unit and...(see
later)
* Perform “optimistic’ computations that are not harmful

— Read rsand rt and store them in non-ISA visible registers A and B
that will be used asinput to ALU

A — REG[IR[25:21]] (read rs)
B — REG[IR[20:16]] (read rt)
— Compute the branch address just in case we had abranch!
ALUout — PC +(sign-ext(IR[15:0]) *4 (ALUout isaso anon-1SA
visibleregister)
* New resources
— A, B, ALUout

4/22/2004 (CSE378 Multicycleimpl, 5

ALU execution

e If instruction is R-type
ALUout —A op. B
e If instruction is Immediate
ALUout — A op. sign-extend(IR[15:0])
e If instruction is Load/Store
ALUout — A + sign-extend(IR[15:0])
e If instruction is branch

If (A=B) then PC ~ ALUout (notethisisthe ALUout computed in
the previous cycle)

* No new resources

41222004 CSE378 Multicycleimpl,. 6




Memory access or ALU completion

e If Load

MDR ~ Memory[ALUout] (MDR isthe Memory Data Register
non-ISA visible register)

« If Store
Memory[ALUout] - B
e If arith

Reg[IR[15:11]] — ALUout
* New resources
- MDR

412212004 CSE378 Multicycleimpl,

Load completion

» Writeresult register
Reg[IR[20:16]] — MDR

412212004 CSE378 Multicycleimpl,.

Streamlining of resources (cf. Figure 5.31)

« No distinction between instruction and data memory
¢ Only oneALU

« But afew more muxes and registers (IR, MDR etc.)

412212004 CSE378 Multicycleimpl,

Control Unit for Multiple Cycle
Implementation

 Control is more complex than in single cycle since:
— Need to define control signas for each step
— Need to know which step we are on

* Two methods for designing the control unit

— Finite state machine and hardwired control (extension of the single
cycle implementation)

— Microprogramming (read the book about it)

412212004 CSE378 Multicycleimpl,. 10

What are the control signals needed?
(cf. Fig5.32)

e Let'slook at control signals needed at each of 5 steps
« Signals needed for

— reading/writing memory

— reading/writing registers

— control the various muxes

— control the ALU (recall how it was done for single cycle
implementation)

4/22/2004 (CSE378 Multicycleimpl, 11

Instruction fetch

* Need to read memory

— Choose input address (mux with signa lorD = 0)
— Set MemRead signa

— Set IRwrite signal (note that thereis no write signal for MDR;
Why?)

» Set sourcesfor ALU
— Source 1: mux set to “come from PC” (signal ALUSIcA = 0)
— Source 2: mux set to “constant 4” (signal ALUSr¢B = 01)

e Set ALU control to “+” (e.g., ALUop = 00 and don’t care
for the function bits)

41222004 CSE378 Multicycleimpl,. 12




Instruction fetch (PC increment;
cf. Figure 5.33)

« Set the mux to store in PC as coming from ALU (signal
PCsource = 01)

* Set PCwrite

— Note: this could be wrong if we had abranch but it will be
overwritten in that case; see step 3 of branch instructions

412212004 CSE378 Multicycleimpl, 13

Instruction decode and read source registers

* Read registersin A and B

— No need for control signals. Thiswill happen at every cycle. No
problem since neither IR (giving names of the registers) nor the
registers themselves are modified. When we need A and B as
sources for the ALU, e.g., in step 3, the muxes will be set
accordingly

* Branch target computations. Select inputs for ALU

— Source 1: mux set to “come from PC” (signal ALUS'cA = 0)

— Source 2: mux set to “come from IR, sign-extended, shifted |eft 2"
(signd ALUS¢B = 11)

e Set ALU control to “+” (ALUop = 00)

412212004 CSE378 Multicycleimpl,. 14

Concept of “state’

* During steps 1 and 2, dl instructions do the same thing
« At step 3, opcodeisdirecting

— What control linesto assert (it will be different for aload, an add, a
branch etc.)

— What will be done at subsequent steps (e.g., access memory,
writing aregister, fetching the next instruction)

« At each cycle, the control unit is put in a specific state that
depends only on the previous state and the opcode

— (current state, opcode) — (next state) Finite state machine (cf.
CSE370, CSE 322)

412212004 CSE378 Multicycleimpl, 15

Thefirst two states

 Since the data flow and the control signals are the same for
al instructionsin step 1 (instr. fetch) there is only one state
associated with step 1, say state 0
* And since all operationsin the next step are also always
the same, we will have the transition
— (stae0, al) - (state 1)

412212004 CSE378 Multicycleimpl,. 16

Customary notation

Instruction decode and
read source registers

(state 1)

Instruction fetch

(state 0)

Memread
ALUScA =0
loD=0
Irwrite
ALUsrcB =01

ALUSICA =0
ALUsrcB =11
ALUop =00

No label because transition

ALUop =00 is always taken

Powrite

Pesource = 00 \
412212004 CSE378 Multicycleimpl, 17

Transitions from State 1

» After the decode, the data flow depends on the type of
instructions:
— Register-Register : Needs to compute aresult and store it

— Load/Store: Needs to compute the address, access memory, and in
the case of aload write the result register

— Branch: test the result of the condition and, if need be, change the
PC

— Jump: need to change the PC
— Immediate: Not shown in the figures. Do it as an exercise

4122/2004 (CSE378 Multicycleimpl,. 18




State transitions from State 1

412212004 CSE378 Multicycleimpl, 19

State 2: Memory Address Computation

» Set sourcesfor ALU

— Source 1: mux set to “come from A” (signal ALUSTcA= 1)

— Source 2: mux set to “imm. extended” (signal ALUS cB = 10)
e Set ALU control to “+” (ALUop = 00)
 Transition from State 2

— If wehavea“load” transition to State 3

— If wehave a“store” transition to State 5

412212004 CSE378 Multicycleimpl,. 20

State 2: Memory address computation

ALUSrcA =1

State 2
ALUSIcB = 10
ALUop =00
Opcode “load” Opcode “store”
State
State5
4122/2004 CSE378 Multicycleimpl, 21

One more example: State 5 --Store

* Thecontrol signals are:
— Set mux for address as coming from ALUout (lorD = 1)
— Set MemWrite
— Note that what has to be written has been sitting in B al that time
(and was rewritten, unmodified, at every cycle).
¢ Sincetheinstruction is completed, the transition from State
5isawaysto State 0 to fetch a new instruction.
— (State 5, dways) - (State0)

412212004 CSE378 Multicycleimpl,. 22

Multiple Cycle Implementation: the whole
story

« Data path with control lines: Figure 5.33

« Control unit Finite State Machine Figure 5.42
— Immediate instructions are not there

4/22/2004 (CSE378 Multicycleimpl, 23

Hardwired implementation of the control unit

* Single cycle implementation:
— Input (Opcode) = Combinational circuit (PAL) = Output signas
(data path)
— Input (Opcode + function bits) = ALU control
* Multiple cycle implementation
— Need to implement the finite state machine

— Input (Opcode + Current State -- stable storage) = Combinational
circuit (PAL) = Output signals (data path + setting next state)
— Input (Opcode + function bits + Current State) = ALU control

41222004 CSE378 Multicycleimpl,. 24




Hardwired “ diagram”

PAL
utput
Input
Opcode +
function bits

412212004

CSE378 Multicycleimpl,

To data path

25




