Drawbacks of single cycle implementation

« All instructions take the same time although
— someinstructions are longer than others;

« eg. load islonger than add since it has to access data memory in
addition to all the other steps that add does

— thusthe “cycle” has to be for the “longest path”
« Some combinational units must be replicated since used in
the same cycle
— eg., ALU for computing branch address and ALU for computing
branch outcome

« but thisis no big deal (these duplicate resources will be needed when
we will pipelineinstructions)

412212004 CSE378 Multicycleimpl, 1

Alternative to single cycle

» Haveashorter cycle and instructions execute in multiple
(shorter) cycles

» The (shorter) cycle time determined by the longest delay in
individual functional units (e.g., memory or ALU etc.)

* Possibility to streamline some resources since they will be
used at different cycles

» Sincethereis need to keep information “between cycles’,
we'll need to add some stable storage (registers) not visible
at the ISA level

e Not al instructions will require the same number of cycles
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Multiple cycle implementation

« Follows the decomposition of the steps for the execution
of instructions
— Cycle 1. Instruction fetch and increment PC

— Cycle 2. Instruction decode and read source registers and branch
address computation

— Cycle 3. ALU execution or memory address calculation or set PC
if branch successful

— Cycle 4. Memory access (load/store) or write register (arith/log)
— Cycle 5 Write register (load)
« Note that branch takes 3 cycles, load takes 5 cycles, all
otherstake 4 cycles
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Instruction fetch

* Because fieldsin the instruction are needed at different
cycles, the instruction has to be kept in stable storage,
namely an Instruction Register (IR)

e Theregister transfer level actions during this step

IR — Memory[PC]

PC - PC+4

* Resources required

— Memory (but no need to distinguish between instruction and data
memories; |ater on we will because the need will reappear when
we pipeline instructions)

— Adder to increment PC

- IR
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Instruction decode and read source registers

« Instruction decode: send opcode to control unit and...(see
later)
* Perform “optimistic’ computations that are not harmful

— Read rsand rt and store them in non-ISA visible registers A and B
that will be used asinput to ALU

A — REG[IR[25:21]] (read rs)
B — REG[IR[20:16]] (read rt)
— Compute the branch address just in case we had abranch!
ALUout — PC +(sign-ext(IR[15:0]) *4 (ALUout isaso anon-1SA
visibleregister)
* New resources
— A, B, ALUout
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ALU execution

e If instruction is R-type
ALUout —A op. B
e If instruction is Immediate
ALUout — A op. sign-extend(IR[15:0])
e If instruction is Load/Store
ALUout — A + sign-extend(IR[15:0])
e If instruction is branch

If (A=B) then PC ~ ALUout (notethisisthe ALUout computed in
the previous cycle)

* No new resources
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Memory access or ALU completion

e If Load

MDR ~ Memory[ALUout] (MDR isthe Memory Data Register
non-ISA visible register)

« If Store
Memory[ALUout] - B
e If arith

Reg[IR[15:11]] — ALUout
* New resources
- MDR
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Load completion

» Writeresult register
Reg[IR[20:16]] — MDR
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Streamlining of resources (cf. Figure 5.31)

« No distinction between instruction and data memory
¢ Only oneALU

« But afew more muxes and registers (IR, MDR etc.)
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Control Unit for Multiple Cycle
Implementation

 Control is more complex than in single cycle since:
— Need to define control signas for each step
— Need to know which step we are on

* Two methods for designing the control unit

— Finite state machine and hardwired control (extension of the single
cycle implementation)

— Microprogramming (read the book about it)
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What are the control signals needed?
(cf. Fig5.32)

e Let'slook at control signals needed at each of 5 steps
« Signals needed for

— reading/writing memory

— reading/writing registers

— control the various muxes

— control the ALU (recall how it was done for single cycle
implementation)
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Instruction fetch

* Need to read memory

— Choose input address (mux with signa lorD = 0)
— Set MemRead signa

— Set IRwrite signal (note that thereis no write signal for MDR;
Why?)

» Set sourcesfor ALU
— Source 1: mux set to “come from PC” (signal ALUSIcA = 0)
— Source 2: mux set to “constant 4” (signal ALUSr¢B = 01)

e Set ALU control to “+” (e.g., ALUop = 00 and don’t care
for the function bits)
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Instruction fetch (PC increment;
cf. Figure 5.33)

« Set the mux to store in PC as coming from ALU (signal
PCsource = 01)

* Set PCwrite

— Note: this could be wrong if we had abranch but it will be
overwritten in that case; see step 3 of branch instructions
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Instruction decode and read source registers

* Read registersin A and B

— No need for control signals. Thiswill happen at every cycle. No
problem since neither IR (giving names of the registers) nor the
registers themselves are modified. When we need A and B as
sources for the ALU, e.g., in step 3, the muxes will be set
accordingly

* Branch target computations. Select inputs for ALU

— Source 1: mux set to “come from PC” (signal ALUS'cA = 0)

— Source 2: mux set to “come from IR, sign-extended, shifted |eft 2"
(signd ALUS¢B = 11)

e Set ALU control to “+” (ALUop = 00)
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Concept of “state’

* During steps 1 and 2, dl instructions do the same thing
« At step 3, opcodeisdirecting

— What control linesto assert (it will be different for aload, an add, a
branch etc.)

— What will be done at subsequent steps (e.g., access memory,
writing aregister, fetching the next instruction)

« At each cycle, the control unit is put in a specific state that
depends only on the previous state and the opcode

— (current state, opcode) — (next state) Finite state machine (cf.
CSE370, CSE 322)
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Thefirst two states

 Since the data flow and the control signals are the same for
al instructionsin step 1 (instr. fetch) there is only one state
associated with step 1, say state 0
* And since all operationsin the next step are also always
the same, we will have the transition
— (stae0, al) - (state 1)
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Customary notation

Instruction decode and
read source registers

(state 1)

Instruction fetch

(state 0)

Memread
ALUScA =0
loD=0
Irwrite
ALUsrcB =01

ALUSICA =0
ALUsrcB =11
ALUop =00

No label because transition

ALUop =00 is always taken

Powrite

Pesource = 00 \
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Transitions from State 1

» After the decode, the data flow depends on the type of
instructions:
— Register-Register : Needs to compute aresult and store it

— Load/Store: Needs to compute the address, access memory, and in
the case of aload write the result register

— Branch: test the result of the condition and, if need be, change the
PC

— Jump: need to change the PC
— Immediate: Not shown in the figures. Do it as an exercise

4122/2004 (CSE378 Multicycleimpl,. 18




State transitions from State 1
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State 2: Memory Address Computation

» Set sourcesfor ALU

— Source 1: mux set to “come from A” (signal ALUSTcA= 1)

— Source 2: mux set to “imm. extended” (signal ALUS cB = 10)
e Set ALU control to “+” (ALUop = 00)
 Transition from State 2

— If wehavea“load” transition to State 3

— If wehave a“store” transition to State 5
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State 2: Memory address computation

ALUSrcA =1

State 2
ALUSIcB = 10
ALUop =00
Opcode “load” Opcode “store”
State
State5
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One more example: State 5 --Store

* Thecontrol signals are:
— Set mux for address as coming from ALUout (lorD = 1)
— Set MemWrite
— Note that what has to be written has been sitting in B al that time
(and was rewritten, unmodified, at every cycle).
¢ Sincetheinstruction is completed, the transition from State
5isawaysto State 0 to fetch a new instruction.
— (State 5, dways) - (State0)
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Multiple Cycle Implementation: the whole
story

« Data path with control lines: Figure 5.33

« Control unit Finite State Machine Figure 5.42
— Immediate instructions are not there
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Hardwired implementation of the control unit

* Single cycle implementation:
— Input (Opcode) = Combinational circuit (PAL) = Output signas
(data path)
— Input (Opcode + function bits) = ALU control
* Multiple cycle implementation
— Need to implement the finite state machine

— Input (Opcode + Current State -- stable storage) = Combinational
circuit (PAL) = Output signals (data path + setting next state)
— Input (Opcode + function bits + Current State) = ALU control
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Hardwired “ diagram”

PAL
utput
Input
Opcode +
function bits
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To data path
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