
1

5/4/2004 CSE378 Pipelining hazards 1

Control unit extension for data hazards

IF ID EX Mem WB

IF/ID

ID/EX
EX/Mem

Mem/WB

Control
Unit

Forwarding unit

Hazard detection
unit

5/4/2004 CSE378 Pipelining hazards 2

Forwarding unit

• Forwarding is done prior to ALU computation in EX stage

• If we have an R-R instruction, the forwarding unit will
need to check
– whether EX/Mem result register = IF/ID rs

– EX/Mem result register = IF/ID rt

– and if so set up muxes to ALU source appropriately

• and also whether
– Mem/WB result register = IF/ID rs

– Mem/WB result register = IF/ID rt

– and if so set up muxes to ALU source appropriately

5/4/2004 CSE378 Pipelining hazards 3

Forwarding unit (ct’d)

• For a Load/Store or Immediate instruction
– Need to check forwarding for rs only

• For a branch instruction
– Need to check forwarding for the registers involved in the

comparison

5/4/2004 CSE378 Pipelining hazards 4

Forwarding in consecutive instructions

• What happens if we have
add $10,$10,$12

add $10,$10,$12

add $10,$10,$12

Forwarding priority is given to the most recent result, that is the one
generated by the ALU in the EX/Mem, not the one passed to
Mem/Wb

– So same conditions as before for forwarding from EX/MEM but
when forwarding from MEM/WB check if the forwarding is also
done for the same register from EX/MEM

5/4/2004 CSE378 Pipelining hazards 5

Hazard detection unit

• If a Load (instruction i-1) is followed by instruction i that
needs the result of the load, we need to stall the pipeline
for one cycle , that is
– instruction i-1 should progress normally
– instruction i should not progress
– no new instruction should be fetched

• The hazard detection unit should operate during the ID
stage

• When processing instruction i, how do we know
instruction i-1 is a Load ?
– Memread signal is asserted in ID/EX

5/4/2004 CSE378 Pipelining hazards 6

Hazard detection unit (c’d)

• How do we know we should stall
– instruction i-1 is a Load and either

• ID/EX rt = IF/ID rs, or

• ID/EX rt = IF/ID rt

• How do we prevent instruction i to progress
– Put 0’s in all control fields of ID/EX (becomes a no-op)

– Don’ t change the IF/ID field (have a control line be asserted at
every cycle to write it unless we have to stall)

• How do we prevent fetching a new instruction
– Have a control line asserted only when we want to write a new

value in the PC

2

5/4/2004 CSE378 Pipelining hazards 7

The (almost) overall picture for data hazards

• See Figure 6.46.

• What is missing
– Forwarding when Load followed by a Store (mem to mem copy)

• forwarding from MEM/WB stage to memory input

– Details about immediate instructions, address computations and
passing the contents of the store register from stage to stage (cf.
Figure 6.43)

5/4/2004 CSE378 Pipelining hazards 8

Control hazards

• Pipelining and branching don’ t get along

• Transfer of control (jumps, procedure call/returns,
successful branches) cause control hazards

• When a branch is known to succeed, at the Mem stage (but
could be done one stage earlier), there are instructions in
the pipeline in stages before Mem that
– need to be converted into “no-op”

– and we need to start fetching the correct instructions by using the
right PC

5/4/2004 CSE378 Pipelining hazards 9

Example of control hazard
Branch decision known at
this stage

Beq $12,$13,L

These 3 instructions are wrong
if branch is successful

The PC is correct and we
fetch the right instruction

IF

IF

IF

IF

IF

5/4/2004 CSE378 Pipelining hazards 10

Resolving control hazards

• Detecting a potential control hazard is easy
– Look at the opcode

• We must insure that the state of the program is not changed
until the outcome of the branch is known. Possibilities are:
– Stall as soon as opcode is detected (cost 3 bubbles; same type of

logic as for the load stall but for 3 cycles instead of 1)

– Assume that branch won’ t be taken (cost only if branch is taken;
see next slides)

– Use some predictive techniques

5/4/2004 CSE378 Pipelining hazards 11

Assume branch not taken strategy

• We have a problem if branch is taken!

• “No-op” the “wrong” instructions
– Once the new PC is known (in Mem stage)

• Zero out the instruction field in the IF/ID pipeline register

• For the instruction in the ID stage, use the signals that were set-up for
data dependencies in the Load case

• For the instruction in the EX stage, zero out the result of the ALU
(e.g, make the result register be register $0)

5/4/2004 CSE378 Pipelining hazards 12

Optimizations

• Move up the result of branch execution
– Do target address computation in ID stage (like in multiple cycle

implementation)

– Comparing registers is “ fast” ; can be done in first phase of the
clock and setting PC in the second phase.

– Thus we can reduce stalling time by 1 bubble

• In the book, they reduce it by 2 bubbles but….
– The organization as shown is slightly flawed (they forgot about

extra complications in forwarding ….)

3

5/4/2004 CSE378 Pipelining hazards 13

Branch prediction

• Instead of assuming “branch not taken” you can have a
table keeping the history of past branches
– We’ ll see how to build such tables when we study caches

– History can be restricted to 2-bit “saturating counters” such that it
takes two wrong prediction outcomes before changing your
prediction

– If predicted taken, will need only 1 bubble since PC can be
computed during ID stage.

– There even exists schemes where you can predict and not lose any
cycle on predicted taken, of course if the prediction is correct

• Note that if prediction is incorrect, you need to flush the
pipe as before

5/4/2004 CSE378 Pipelining hazards 14

Current trends in microprocessor design

• Superscalar processors
– Several pipelines, e.g., integer pipeline(s), floating-point,

load/store unit etc

– Several instructions are fetched and decoded at once. They can be
executed concurrently i f there are no hazards

• Out-of-order execution (also called dynamically scheduled
processors)
– While some instructions are stalled because of dependencies or

other causes (cache misses, see later), other instructions down he
stream can still proceed.

– However results must be stored in program order!

5/4/2004 CSE378 Pipelining hazards 15

Current trends (ct’d)

• Speculative execution
– Predict the outcome of branches and continue processing with (of

course) a recovery mechanism.
– Because branches occur so often, the branch prediction

mechanisms have become very sophisticated
– Assume that Load/Stores don’ t conflict (of course need to be able

to recover)

• VLIW (or EPIC) (Very Long Instruction Word)
– In “pure VLIW”, each pipeline (functional unit) is assigned a task

at every cycle. The compiler does it.
– A little less ambitious: have compiler generate long instructions

(e.g., using 3 pipes; cf. Intel IA-64 or Itanium)

