
1

4/7/2004 CSE378 Instr. encoding. (ct’ d) 1

Flow of Control -- Conditional branch
instructions

• You can compare directly
– Equality or inequality of two registers

– One register with 0 (>, <, ≥, ≤)

• and branch to a target specif ied as
– a signed displacement expressed in number of instructions (not

number of bytes) from the instruction following the branch

– in assembly language, it is highly recommended to use labels and
branch to labeled target addresses because:

• the computation above is too complicated

• some pseudo-instructions are translated into two real instructions

4/7/2004 CSE378 Instr. encoding. (ct’ d) 2

Examples of branch instructions

Beq rs,rt,target #go to target if rs = rt

Beqz rs, target #go to target if rs = 0

Bne rs,rt,target #go to target if rs != rt

Bltz rs, target #go to target if rs < 0

etc.

but note that you cannot compare directly 2 registers for <, > …

Any idea why?

4/7/2004 CSE378 Instr. encoding. (ct’ d) 3

Comparisons between two registers

• Use an instruction to set a third register
slt rd,rs,rt #rd = 1 if rs < rt else rd = 0
sltu rd,rs,rt #same but rs and rt are considered unsigned

• Example: Branch to Lab1 if $5 < $6
slt $10,$5,$6 #$10 = 1 if $5 < $6 otherwise $10 = 0
bnez $10,Lab1 # branch if $10 =1, i.e., $5<$6

• There exist pseudo instructions to help you!
blt $5,$6,Lab1 # pseudo instruction translated into

slt $1,$5,$6
bne $1,$0,Lab1

Note the use of register 1 by the assembler and the fact that computing the
address of Lab1 requires knowledge of how pseudo-instructions are
expanded

4/7/2004 CSE378 Instr. encoding. (ct’ d) 4

Unconditional transfer of control

• Can use “beqz $0, target”
– Very useful but limited range (± 32K instructions)

• Use of Jump instructions
j target #special format for target byte address (26 bits)
jr $rs #jump to address stored in rs (good for switch

#statements and transfer tables)
• Call/return functions and procedures

jal target #jump to target address; save PC of
#following instruction in $31 (aka $ra)

jr $31 # jump to address stored in $31 (or $ra)

Also possible to use jalr rs,rd # jump to address stored in rs; rd = PC of
following instruction in rd with default rd = $31

4/7/2004 CSE378 Instr. encoding. (ct’ d) 5

Branch addressing format

• Need Opcode, one or two registers, and an offset
– No base register since offset added to PC

• When using one register (i.e., compare to 0), can use the
second register field to expand the opcode
– similar to function field for arith instructions

beq $4,$5,1000

bgtz $4,1000

Opc rs rt/func target offset

4/7/2004 CSE378 Instr. encoding. (ct’ d) 6

How to address operands

• The ISA specif ies addressing modes

• MIPS, as a RISC machine has very few addressing modes
– register mode. Operand is in a register

– base or displacement or indexed mode
• Operand is at address “register + 16-bit signed offset”

– immediate mode. Operand is a constant encoded in the instruction

– PC-relative mode. As base but the register is the PC

2

4/7/2004 CSE378 Instr. encoding. (ct’ d) 7

Some interesting instructions. Multiply

• Multiplying 2 32-bit numbers yields a 64-bit result
– Use of HI and LO registers

Mult rs,rt #HI/LO = rs* rt

Multu rs,rt

Then need to move the HI or LO or both to regular registers

mflo rd #rd = LO

mfhi rd #rd = HI

Once more the assembler can come to the rescue with a pseudo inst

mul rd,rs,rt #generates mult and mflo

#and mfhi if necessary

4/7/2004 CSE378 Instr. encoding. (ct’ d) 8

Some interesting instructions. Divide

• Similarly, divide needs two registers
– LO gets the quotient

– HI gets the remainder

• If an operand is negative, the remainder is not specif ied by
the MIPS ISA.

4/7/2004 CSE378 Instr. encoding. (ct’ d) 9

Logic instructions

• Used to manipulate bits within words, set-up masks etc.
• A sample of instructions

and rd,rs,rt #rd=AND(rs,rt)
andi rd,rs,immed
or rd,rs,rt
xor rd,rs,rt

• Immediate constant limited to 16 bits (zero-extended). If
longer mask needed, use Lui.

• There is a pseudo-instruction NOT
not rt,rs #does 1’ s complement (bit by bit

#complement of rs in rt)

4/7/2004 CSE378 Instr. encoding. (ct’ d) 10

Example of use of logic instructions

• Create a mask of all 1’s for the low-order byte of $6. Don’ t
care about the other bits.
ori $6,$6,0x00ff #$6[7:0] set to 1’ s

• Clear high-order byte of register 7 but leave the 3 other
bytes unchanged
lui $5,0x00ff #$5 = 0x00ff0000

ori $5,$5,0xffff #$5 = 0x00ffffff

and $7,$7,$5 #$7 =0x00…… (…whatever was
#there before)

4/7/2004 CSE378 Instr. encoding. (ct’ d) 11

Shift instructions

• Logical shifts -- Zeroes are inserted
sll rd,rt,shm #left shift of shm bits; inserting 0’ s on

#the right
srl rd,rt,shm #right shift of shm bits; inserting 0’ s

#on the left

• Arithmetic shifts (useful only on the right)
– sra rd,rt,shm # Sign bit is inserted on the left

• Example let $5 = 0xff00 0000
sll $6,$5,3 #$6 = 0xf800 0000
srl $6,$5,3 #$6 = 0x1fe0 0000
sra $6,$5,3 #$6 = 0xffe0 0000

4/7/2004 CSE378 Instr. encoding. (ct’ d) 12

Example -- High-level language

int a[100];
int i;

for (i=0; i<100; i++){
a[i] = 5;

}

3

4/7/2004 CSE378 Instr. encoding. (ct’ d) 13

Assembly language version
Assume: start address of array a in r15.
We use r8 to store the value of i and r9 for the value 5

add $8,$0,$0 #initialize i
li $9,5 #r9 has the constant 5

Loop: mul $10,$8,4 #r10 has i in bytes
#could use a shift left by 2

addu $14,$10,$15 #address of a[i]
sw $9,0($14) #store 5 in a[i]
addiu $8,$8,1 #increment i
blt $8,100,Loop #branch if loop not finished

#taking lots of liberty here!

4/7/2004 CSE378 Instr. encoding. (ct’ d) 14

Machine language version (generated by
SPIM)

[0x00400020] 0x00004020 add $8, $0, $0 ; 1: add $8,$0,$0
[0x00400024] 0x34090005 ori $9, $0, 5 ; 2: li $9,5
[0x00400028] 0x34010004 ori $1, $0, 4 ; 3: mul $10,$8,4
[0x0040002c] 0x01010018 mult $8, $1
[0x00400030] 0x00005012 mflo $10
[0x00400034] 0x014f7021 addu $14, $10, $15 ; 4: addu $14,$10,$15
[0x00400038] 0xadc90000 sw $9, 0($14) ; 5: sw $9,0($14)
[0x0040003c] 0x25080001 addiu $8, $8, 1 ; 6: addiu $8,$8,1
[0x00400040] 0x29010064 slti $1, $8, 100 ; 7: blt $8,100,Loop
[0x00400044] 0x1420fff9 bne$1, $0, -28 [Loop-0x00400044]

