Multicycle Review
! Performance Examples

* Single Cycle MIPS Implementation

» All instructions take the same amount of

time
~ Signals propagate along longest path
" CPI =1

n Lots of operations happening in parallel
» Increment PC
» ALU
» Branch target computation

n Inefficient

i Multicycle MIPS Implementation

n Instructions take different number of
cycles
» Cycles are identical in length
n Share resources across cycles
» E.g. one ALU for everything
» Minimize hardware
n Cycles are independent across instructions

» R-type and memory-reference instructions do
different things in their 4th cycles

n CPILis 3,4, or 5 depending on instruction

ﬁ Multicycle versions of various instructions

n R-type (add, sub, etc.) — 4 cycles
1. Read instruction
2. Decode/read registers
3. ALU operation
4. ALU Result stored back to destination register.
n Branch - 3 cycles
1. Read instruction
2. Get branch address (ALU); read regs for comparing.
3. ALU compares registers; if branch taken, update PC

* Multicycle versions of various instructions

n Load -5 cycles
1. Read instruction
2. Decode/read registers
3. ALU adds immediate to register to form address
4. Address passed to memory; data is read into MDR
5. Data in MDR is stored into destination register
n Store — 4 cycles
Read instruction
Decode/read registers
ALU adds immediate to a register to form address

Save data from the other source register into
memory at address from cycle 3

H W=

* Control for new instructions

n Suppose we introduce Iw2r:
o w2r $1, $2, $3:
» compute address as $2+$3
» put result into $1.
» In other words: Iw $1, 0($2+$3)

» R-type instruction
» How does the state diagram change?

i Control for new instructions

n Suppose we introduce Iw2r:

0o lw2r $1, $2, $3:
» compute address as $2+$3
» Load value at this address into $1
» In other words: Iw $1, 0($2+$3)

n R-type instruction

» How does the state diagram change?
» New states: A,B,C

State 1 (op=w2) State A State B State C back to 0

» A controls: ALUOp=00, ALUSrcA=1, ALUSrcB=0
» B controls: MemRead=1, IorD = 1
» Ccontrols: RegDst = 1, RegWrite = 1, MemToReg = 1

‘_L Performance

n CPI: cycles per instruction
» Average CPI based on instruction mixes
n Execution time = IC* CPI * C
» Where IC = instruction count; C = clock cycle time
n Performance: inverse of execution time
n MIPS = million instructions per second
» Higher is better
» Amdahl’s Law:

Exec.timeaffected byimprovemert

Exectimeafter improvement = -
Amount of improvement

+ Exectimeunaffected

i Performance Examples

n Finding average CPI:

‘_L Performance Examples

n Finding average CPI:

Instruction Type | Frequency | CPI
load/store 50% 2
jal/jr 8% 2
Branches 8% 3
ALU 34% 1

Instruction Type | Frequency | CPI
load/store 50% 2
jal/jr 8% 2
Branches 8% 3
ALU 34% 1

n CPI = 0.50*2 + 0.08*2 + 0.08*3 + 0.34*1

CPI =1.74

* Performance Examples

Instruction Type

Frequency

CPI

load/store

50%

jal/jr

8%

Branches

8%

ALU

34%

2
2
3
1

i Performance Examples

Instruction Type | Frequency | CPI
load/store 50% 2
jal/jr 8% 2
Branches 8% 3
ALU 34% 1

n CPI =1.74

n Assume a 2GHz P4, with program consisting
of 1,000,000,000 instructions.
» Find execution time

n CPI = 1.74, 2GHz P4, 109 instructions.
n Execution_time = IC * CPI * Cycletime
= 1079 * 1.74 * 0.5 ns = 0.87 seconds

i Performance Examples

Instruction Type | Frequency | CPI
load/store 50% 2
jal/jr 8% 2
Branches 8% 3
ALU 34% 1

n We improve the design and change CPI of
load/store to 1.

» Speedup assuming the same program?

i Performance Examples

Instruction Type | Frequency | CPI
load/store 50% 2
jal/jr 8% 2
Branches 8% 3
ALU 34% 1

» We improve the design and change CPI of
load/store to 1.

» Speedup assuming the same program/cycle time?

o CPl, = 0.5%1 + 0.08%2 + 0.08*3 + 0.34*1
CPIL.. = 1.24

n Speedup = 1.74/1.24 = 1.4

i Amdahl’s Law

Exec.timeaffected byimprovement
Amountof improvement

Exectimeafter improvement = + Exectimeunaffected

n Suppose I make my add instructions twice as
fast.
» Suppose 20% of my program is doing adds

n Speedup?

» What if I make the adds infinitely fast?

i Amdahl’s Law

Exectimeafter impro - Exec‘tlmeaﬁectgd byimprovemernt
Amountof improvement

n Suppose I make my add instructions twice as
fast.

» Suppose 20% of my program is doing adds
n Speedup?

+ Exectimeunaffected

New Exectime = old_exectime(4/5 + (1/5)/2) = 9/10 * old_exectime
Speedup = 10/9

n What if I make the adds infinitely fast?

Speedup = 5/4, only 20% improvement!

* Multicycle performance example

n Multicycle can have better performance than single cycle
» Instructions take only as many cycles as they need

n CPI Example
Loads: 5, stores: 4, R-type: 4, branches: 3
% of total instructions:
loads: 22%, stores: 11%, R-type: 50%, branches: 17%
Same # of instructions for single cycle and multicycle!
CPIpge= 1

« but each cycle of M is equivalent to 5 cycles of My,

« So effectively, CPL;,, = 5 for this comparison
CPlL = 5%.22 +4* .11 + 4 * 50 + 3 * .17 = 4.05
Speedup = 5/4.05 = 1.2

