
CSE 378 Spring 2004

Machine Organization and Assembly Language Programming

Problem Set #3

Due: Part I Wednesday April 21st
Due: Parts II and III Wednesday April 28th

This assignment is a little longer and parts of it are tedious (such is life) so (1) It is due in two parts
and (2) you can do it in groups of 2, if you so desire.

The assignment has two goals: (1) give you an idea of how behavioral machine simulators are built, and
(2) give you an introduction to the Java Virtual machine (JVM), a machine-independent representation
of high-level programming languages (or another form of Assembly Language), which is based on the
concept of stack architectures (recall Problem Set #2).

The JVM machine
The JVM is a stack machine. This means as you have seen in Problem Set #2 that arithmetic
instructions will take their source operands from the top of the stack (popping twice) and store (push)
the result on top of the stack (by convention, the JVM stack grows “upwards”, i.e., towards increasing
addresses). In addition to the stack, the JVM provides local storage for variables. A small subset of
the JVM instruction set is in the table below:

Name Bcode Instr. format Stack operations Description
IADD 0x60 IADD POP v1, POP v2, PUSH res Integer add
ISUB 0x64 ISUB POP v1, POP v2, PUSH res Integer sub
IMUL 0x68 IMUL POP v1, POP v2, PUSH res Integer mul
IDIV 0x6b IDIV POP v1, POP v2, PUSH res Integer div (quotient)
ILOAD 0x15 ILOAD index PUSH res Ld from loc. var. at index
ISTORE 0x36 ISTORE index POP v1 St to loc. var. at index
IALOAD 0x2e IALOAD see text Ld from local
IASTORE 0x4f IASTORE see text St to local and pop
BIPUSH 0x10 BIPUSH imm PUSH res Byte immediate push
SIPUSH 0x17 SIPUSH imm1 imm2 PUSH res Short immediate push
DUP 0x59 DUP Duplicate top of stack
DUP2 0x5c DUP2 Dupl. top 2 st. entries
POP 0x57 POP POP v1 POP value, discard
IFEQ 0x99 IFEQ offset1 offset2 POP v1 Branch on v1 == 0
IFNE 0x9a IFNE offset1 offset2 POP v1 Branch on v1 !=0
IFLT 0x9b IFLT offset1 offset2 POP v1 Branch on v1 <0
IFLE 0x9e IFLE offset1 offset2 POP v1 Branch on v1 <=0
IFGT 0x9d IFGT offset1 offset2 POP v1 Branch on v1 >0
IFGE 0x9c IFGE offset1 offset2 POP v1 Branch on v1 >=0
GOTO 0xa7 GOTO offset1 offset2 none unconditional branch
IRETURN 0xac IRETURN POP v1 Integer return
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JVM Instruction Syntax
Each byte code is 1 byte long. An index (as in ILOAD index) is a 1 byte long unsigned integer. imm1
and imm2 are both 1 byte long and when concatenated form a signed immediate value of 2 bytes. Thus
BIPUSH is followed by 1 byte of immediate while SIPUSH is followed by 2 bytes of immediate. offfset1
and offset2 are also 1 byte long meaning that each branch instruction is followed by a 16-bit offset.

Registers v1 and v2 are part of the register component of the JVMmachine. The latter will be described
in more detail on page 3.

JVM Instruction Semantics
The arithmetic instructions (IADD,ISUB,IMUL,IDIV) all operate on signed 32-bit integers but
you don’t have to worry about overflow. For ISUB, the result is (v2 - v1) (v1 is at the top of the
stack). For IDIV, the result is the integer quotient of (v2/v1). For IDIV, you don’t have to worry
about the remainder. For IMUL, you can assume that the result will fit into a single 32-bit word. Note
that the JVM has a dedicated register used as a stack pointer.

The local variable instructions (ILOAD, ISTORE) have a one-byte operand that has to be interpreted
as an unsigned index value. This index determines the location (a word) within the local storage
area that should be Pushed on top of the stack (for ILOAD) or be overwritten with an element that is
Popped from the stack (for ISTORE). The POP instruction discards the top of the stack and moves
the stack pointer accordingly. However, implementation-wise, the value at the top of the stack is stored
in v1. You may assume that 256 variables will be enough and that this area won’t overflow (of course
in a real implementation you might have a larger index as well as routines to check for overflow and
underflow). Each variable stored in the local storage is a 32-bit signed integer.

The two other local variable instructions (IALOAD, IASTORE) also load/store to/from the stack
in a location in local storage but now instead of the index being given in the instruction, the value
of the index is the value of the location on top of the stack. In other words, IALOAD corresponds
semantically to POP followed by ILOAD local(v1) but this last instruction is not available as such.
So if the value 3 was at the top of the stack and the value 27 in word “local + 3” the value 27 would
replace the value 3 on top of the stack.
IASTORE stores the element below the top of the stack at the local storage location whose index
is on the top of the stack. Then the two top entries on the stack are popped. So, if the value 3 was
on top of the stack and the value 27 below it, then 27 would be stored in “local + 3” and the stack
popped twice.

The immediate instructions (BIPUSH, SIPUSH) are followed respectively by an 8-bit and a 16-bit
signed immediate value. When BIPUSH is executed, the 8-bit immediate value is to be sign-extended
to 32 bits and Pushed on top of the stack. For SIPUSH, the immediate value is calculated as
(immed1 << 8) OR immed2
(where << is a logical left shift) and then sign-extended to 32 bits and Pushed on top of the stack
(i.e., “SIPUSH 0x80 0x01” will push the 32-bit value 0xffff8001 on top of the stack and “SIPUSH 0x01
0x80” will push the 32-bit value 0x00000180).

The duplicate instructions duplicate the top of the stack (DUP) or the two top locations of the stack
(i.e., the top of the stack and the one “below” it) (DUP2).

The branch instructions (IFNE, IFEQ, IFLE, IFLT, IFGE, IFGT) compare the top of the stack
to the value 0 and then pop the top of the stack. These instructions as well as GOTO are followed by
2 bytes: offset1 and offset2. These offsets are RELATIVE to the JVM’s program counter PC. Of course
the JVM has a dedicated register used as PC. If the comparison is successful and in the case of the GO
TO, the control in the interpreted program is transferred to the instruction whose offset, IN BYTES,
relative to the start address of the branch instruction is computed as (offset1 << 8) OR offset2

2



(e.g., “GOTO 0x00 0x03” is a no-op since it transfers to the instruction following the GOTO; “GOTO
0xff 0xfd” will transfer to the instruction whose start is 3 bytes before the GOTO).

Finally, the IRETURN instruction signals the end of the computation (in this simplified machine we
don’t have call/return facilities). The value at the top of the stack is popped and used as the return
value to the main program. Another way to end the computation is to have a bytecode of 0x00.

An example “program” (that does not do anything) would be like:

poi: ILOAD 18 #the use of the label will become clear

ILOAD 6 #when you ‘‘assemble’’ bytecode programs

IADD #see page 4

DUP

BIPUSH -95

ISUB

ISTORE 1

Your task. Part I. Writing an interpreter for the JVM in SPIM
Your task is to write an interpreter for JVM in SPIM and to test it on snippets of programs written
in JVM machine language (like the one above) but translated into byte code as in:
0x15, 0x12, 0x15, 0x06, 0x60, 0x59, 0x10, 0xa1, 0x64, 0x36, 0x01

The basic basic structure of the interpreter, i.e., the SPIM code, should be a loop that will go through
the 5 steps:

1. Fetch the next bytecode
2. Decode it
3. Fetch the operands (if any)
4. Execute the operation
5. Store the results (if any)

The JVM machine that you need to simulate has 4 components:

• Registers:

– the JVM program counter PCJV M which points to the next bytecode to be interpreted
– the JVM stack pointer SPJV M that points to the top of the JVM stack
– the registers v1 and v2 as shown in the table.

Note that these registers are NOT THE SAME as those used in SPIM. For example $sp is a
register that points to the top of the SPIM stack while SPJV M points to the top of the JVM
machine that you are simulating. You should assign either a memory location, or preferably a
SPIM register that does not have a special purpose in SPIM to the JVM stack pointer. This is
true also of course of PCJV M , v1 and v2.

• The JVM program to be interpreted, i.e., a sequence of byte codes.
• The JVM stack
• The JVM local area

A skeleton program to show this lay-out is included at the end of this hand-out.

Although the JVM program that you will write (see below) might not use all the bytecodes defined in
the table, your simulator should include the simulation of all the bytecodes.
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Your task. Part II. Writing a program in JVM bytecodes
The JVM program you have to write is similar to Problem 4 of Problem Set #2, i.e., given an array
of integers and its size, find:

• the number of elements strictly greater than the last element
• the minimum element
• the maximum element
• the (integer) average of all elements

These results should be put in the first few locations of the JVM local storage area. The local area
should contain (in this order)

• the number of elements strictly greater than the last element (initialized to 0)
• the minimum element (initialized to 0)
• the maximum element (initialized to 0)
• the (integer) average of all elements (initialized to 0)
• the size of the sorted array
• the array itself

(Be careful that the array and the few extra variables that you will need must fit in the local storage
area which is limited to 256 variables).

Your task. Part III. “Executing” the program written in Part II on the simulator written
in Part I

Instructions for turnin will be given shortly. What you will have to turnin will be:

• Part I: your JVM interpreter function (written in SPIM). It might be difficult to test the correct-
ness of the interpretation but at the very least you should be able to recognize and decode all
bytecodes and attempt to execute them. You can do that on very simple JVM bytecode programs

• Parts II and III: the array computation program (written in JVM) and its correct execution on
the interpreter. You will be given help in “assembling” the JVM program soon.

Assembling a byte code program
The perl language is useful for translating patterns into other patterns. The perl program jvm −

assemble pl available from the Web page, will transform a program written in JVM assembly language
to a sequence of byte codes that can be pasted into your .data section of a SPIM program. The
command line in Linux is:

perl jvm-assemble_pl <bytecode file> <start label> > <output file>

For example if the “program” on page 3 were in a file named abc, then the command line in Linux:

perl jvm_assemble_pl abc poi > def

would generate the output file:

4



.align 2

poi:

.byte 0x15, 0x12 # iload

.byte 0x15, 0x06 # iload

.byte 0x60 # iadd

.byte 0x59 # dup

.byte 0x10, 0xa1 # bipush

.byte 0x64 # isub

.byte 0x36, 0x01 # istore

.byte 0x00 #

.align 2

end_poi:
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The skeleton program

#------------{ global data section } ------------#

# declare all global variables and string #

# constants in this section. #

#------------------------------------------------#

.data

# A sample set of bytecodes.

jvmbytecode: .byte 0x60, 0x15, 0x10, 0x10, 0xfe, 0x17

.byte 0x18, 0xe4, 0x99, 0x05, 0xe8, 0x00

.align 2

jvmstack: .space 1024 # Allocate stack space

jvmlocal : .word 0,0,0,0 # Reserve space for the 4 answers

.word 12 # length of the array to be examined

.word 13,5,7,2,13,234,13,19,20,17,23,14 #an example array

.space 956

#------------{ code section }--------------------#

# place all main code and procedure code in #

# this section of the file #

#------------------------------------------------#

.text

# declare main as a global symbol

.globl main

main:

subu $sp, $sp, 4 #create 1 new word on the stack

sw $ra, 4($sp) #store the return address

#call the JVM interpreter after storing its arguments in the

#appropriate registers

la $a0, jvmbytecode #store the bytecode address in $a0

la $a1, jvmstack #store the stack address in $a1

la $a2, jvmlocal #store the local address in $a2

jal JVM #call the Java Virtual Machine

# When the JVM is done, we have nothing to do, so just exit our

# program.

lw $ra, 4($sp) #restore the return address

addu $sp, $sp, 4 #restore the stack

j $ra #return
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