
1

Today:

Briefly go over the problems in Homework #2:

• Sometimes, a very simple experiment can
answer a lot of questions. Just try it.

• Modifying code on the fly – question 5
• Addressing mode – question 6

Question 1,2,3
char n[4]={8, -8, -15, 147};
float m[4] = {-1, 0, 950.5, 0.95};
char message[]="A message!";
int i;

for(i = 0; i<4; i++)
printf("%d=[%x]\n", n[i],&(n[i]));

for(i = 0; i<4; i++)
printf("%f=[%x]\n", m[i],&(m[i]));

printf("%s\n", message);

Breakpoint here
for question 1

Breakpoint here
for question 2

Breakpoint here
for question 3

Question 1 Question 2

Question 3 Question 4
• We only have ADD instruction, so we need

to invert an integer when we do subtraction.
– X-Y=X+(-Y)

• How to invert an integer in SSI-0?
– Only use ADD and XOR
– !! (-Y) = (Y XOR 0Xffffffff) ADD 1

• Why?

2

XOR 0x0d, 0x0d, 0x0d # x = 0
ADD 0x0d, 0x0d, 0x0e # x = A[0]
XOR 0x0f, 0x0f, 0x0b # A[1] = A[1] XOR 0xffffffff
ADD 0x0f, 0x0f, 0x0c # A[1] += 1
ADD 0x0d, 0x0d, 0x0f # x += A[1]
ADD 0x0d, 0x0d, 0x10 # x += A[2]
XOR 0x11, 0x11, 0x0b # A[3] = A[4] XOR 0xffffffff
ADD 0x11, 0x11, 0x0c # A[3] += 1
ADD 0x0d, 0x0d, 0x11 # x += A[3]
ADD 0x0d, 0x0d, 0x12 # x += A[4]
STOP
.word 0xffffffff #constant 0xffffffff
.word 1 #constant 1
.word 0 # this is 'x'
.word 0xffffffff # this is A[0]
.word 0x00000000 # A[1]
.word 0x00000001 # A[2]
.word 0x00000002 # A[3]
.word 0x00000004 # A[4]

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0a
0x0b
0x0c
0x0d
0x0e
0x0f
0x10
0x11
0x12

Question 5

• How to implement a loop in SSI-0?
• How to address a memory whose address is

changing in the running of the program?
– Using a variable (memory word) to store the

address.
• We only have direct addressing mode, “BZ target c”
• We don’t have indirect addressing modes. No way

to do “BZ target Mem[c]”

XOR 0x08, 0x08, 0x08 # x = 0
BZ 0x05, 0x11 # check if null
ADD 0x08, 0x08, 0x07 # x += 1
ADD 0x01, 0x01, 0x07 # Modify instruction
BZ 0x01, 0x07 # go back to 0x01
STOP # Stop
.word 0 # constant 0
.word 1 #constant 1
.word 0 # this is 'x'
…… # we don’t care
…… # we don’t care
…… # we don’t care
…… # we don’t care
…… # we don’t care
…… # we don’t care
…… # we don’t care
…… # we don’t care
XXXXX # String starts here

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0a
0x0b
0x0c
0x0d
0x0e
0x0f
0x10
0x11

• Memory is just memory. CPU has no idea of the
meaning of the memory until it is fetched.

• Every word goes into IR is deemed as instruction.
• In SSI-0, we can modify/create code on the fly.
• In modern systems, it is not possible because of the

separation of code and data. The instruction
segment is protected by OS.

• However sometimes, other form of code
modifications are helpful.
– java bytecode modification for security

Problem 6
• In SSI-2, the only addressing method you can use is

indirect register addressing.
– LOAD rd, rt => GPR[rd] = Mem[GPR[rt]]

• No immediate addressing mode is allowed.
Everything(content/address) must go through registers.

• “Load a, b” can load element of vector into GPR[a],
but how do we put the address of the vector into b?
– in start position, PC=0, and GPRs have random contents

• We also need some constants. How do we put them
into GPRs?

Add 0, 0, 1 # 0X00000001
XOR 0, 0, 0 # clear GPR[0]
LOAD 1, 0 # GPR[1] now is 1
XOR 2, 2, 2 # clear GPR[2]
ADD 2, 2, 1 # GPR[2] += GPR[1]
ADD 2, 2, 1 # GPR[2] += GPR[1]

Now GPR[2] is 2
……
AddressofVec1: .word address(Vec1) # address of Vec1
AddressofVec2: .word address(Vec2) # address of Vec2
N: .word N # the length of of the vectors

At this point, you can (in theory) construct any constant you want, including
AddressofVec1, AddressofVec2, and N

And then you can load the element of each vector into your general purpose
register.
(use AddressofVec2+N-1 to get the address of the last element of vector2)

And then you can do everything need for this program.(iteration, subtraction, etc.)

