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Performance metrics for caches

• Basic performance metric: hit ratio h
h = Number of memory references that hit in the cache /

           total number of memory references
Typically h = 0.90 to 0.97

• Equivalent metric: miss rate m = 1 -h 
• Other important metric: Average memory access time

Av.Mem. Access time = h * Tcache + (1-h) * Tmem

where Tcache   is the time to access the cache (e.g., 1 cycle) 
and
 Tmem is the time to access  main memory (e.g., 50 cycles)

(Of course this formula has to be modified the obvious way if 
you have a hierarchy of caches)
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Parameters for cache design

• Goal: Have h as high as possible without paying too much for 
Tcache  

• The bigger the cache size (or capacity), the higher h.
– True but too big a cache increases Tcache 

– Limit on the amount of “real estate” on the chip (although this limit 
is not present for 1st level caches)

• The larger the cache associativity, the higher h.
– True but too much associativity is costly because of the number of 

comparators required and might also slow down Tcache  (extra logic 
needed to select the “winner”)

• Block (or line) size
– For a given application, there is an optimal block size but that 

optimal block size varies from application to application
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Parameters for cache design (ct’d)

• Write policy  (see later)
– There are several policies with, as expected, the most 

complex giving the best results

• Replacement algorithm (for set-associative caches)
– Not very important for caches with small associativity (will be 

very important for paging systems)

• Split I and D-caches vs. unified caches.
– First-level caches need to be split because of pipelining that 

requests an instruction every cycle. Allows for different 
design parameters for I-caches and D-caches

– Second and higher level caches are unified (mostly used for 
data)
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Example of cache hierarchies (don’t quote me 

on these numbers)

MICRO L1 L2 

Alpha 21064 8K(I), 8K(D), WT,    
1-way, 32B 

128K to 8MB,WB, 
1-way,32B 

Alpha 21164 8K(I), 8K(D), WT,    
1-way, 32B ,D l-u fr. 

96K, WB, on-chip,   
3-way,32B,l-u free 

Alpha 21264 64K(I), 64K(D),?,     
2-way, ? 

up to 16MB 

Pentium 8K(I),8K(D),both,      
2-way, 32 B 

Depends 

Pentium II, III 16K(I),16K(D), WB, 
4-way(I),2-way(D), 
32B,l-u free 

512K,32B,4-way, 
tightly-coupled 
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Examples (cont’d)

PowerPC 620 32K(I),32K(D),WB 
8-way, 64B 

1MB TO 128MB, 
WB, 1-way 

MIPS R10000 32K(I),32K(D),l-u, 
2-way, 32B 

512K to 16MB,       
2-way, 32B 
 

 

SUN UltraSparcIII 32K(I),64K(D),l-u,     4-8MB 1-way 
                               4 -way 

AMD K7                  64k(I), 64K(D)
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Back to associativity

• Advantages
– Reduces conflict misses

• Disadvantages
– Needs more comparators

– Access time is longer (need to choose among the 
comparisons, i.e., need of a multiplexor)

– Replacement algorithm is needed and could get more 
complex as associativity grows
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Replacement algorithm

• None for direct-mapped

• Random or LRU or pseudo-LRU for set-associative 
caches
– LRU means that the entry in the set which has not been 

used for the longest time will be replaced (think about a 
stack)
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Impact of associativity on performance

Direct-mapped

2-way
4-way

8-way

Typical curve.

Biggest improvement from 
direct-mapped to 2-way; then 2 
to 4-way then incremental

Miss ratio
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Impact of block size

• Recall block size = number of bytes stored in a cache 
entry

• On a cache miss the whole block is brought into the 
cache

• For a given cache capacity, advantages of large 
block size:
– decrease number of blocks: requires less real estate for tags
– decrease miss rate IF the programs exhibit good spatial 

locality 
– increase transfer efficiency between cache and main 

memory

• For a given cache capacity, drawbacks of large block 
size:
– increase latency of transfers
– might bring unused data IF the programs exhibit poor spatial 

locality
– Might increase the number of conflict/capacity misses
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Classifying the cache misses:The 3 C’s

• Compulsory misses (cold start)
– The first time you touch a block. Reduced (for a given cache 

capacity and associativity) by having large block sizes

• Capacity misses
– The working set is too big for the ideal cache of same 

capacity and block size (i.e., fully associative with optimal 
replacement algorithm). Only remedy: bigger cache!

• Conflict misses (interference)
– Mapping of two blocks to the same location. Increasing 

associativity decreases this type of misses.

• There is a fourth C: coherence misses (cf. 
multiprocessors)
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Impact of block size on performance

Miss ratio

8 
bytes

16 bytes
32 bytes

64 bytes

128 
bytes

Typical form of the curve. 
The knee might appear for 
different block sizes 
depending on the 
application and the cache 
capacity
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Performance revisited

• Recall Av.Mem. Access time = h * Tcache + (1-h) * Tmem

• We can expand on Tmem as Tmem = Tacc + b * Ttra

– where Tacc  is the time to send the address of the block to 
main memory and have the DRAM read the block in its own 
buffer, and

– Ttra is the time to transfer one word (4 bytes) on the memory 
bus from the DRAM to the cache, and  b is the block size (in 
words) (might also depend on width of the bus)

• For example, if Tacc = 5 and Ttra = 1, what cache is best 
between 
– C1 (b1 =1 ) and C2 (b2 = 4) for a program with h1 = 0.85 and 

h2=0.92 assuming Tcache = 1 in both cases.
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Writing in a cache

• On a write hit, should we write:
– In the cache only (write-back) policy

– In the cache and main memory (or next level cache) (write-
through) policy

• On a cache miss, should we
– Allocate a block as in a read (write-allocate)

– Write only in memory (write-around)
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Write-through policy

• Write-through (aka store-through)
– On a write hit, write both in cache and in memory
– On a write miss, the most frequent option is write-around, i.

e., write only in memory

• Pro: 
– consistent view of memory ; 
– memory is always coherent (better for I/O); 
– more reliable (no error detection-correction “ECC” required 

for cache)

• Con: 
– more memory traffic (can be alleviated with write buffers)
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Write-back policy

• Write-back (aka copy-back)
– On a write hit, write only in cache (requires dirty bit)

– On a write miss, most often write-allocate (fetch on miss) but 
variations are possible

– We write to memory when a dirty block is replaced

• Pro-con reverse of write through
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Cutting back on write backs

• In write-through, you write only the word (byte) you 
modify

• In write-back, you write the entire block
– But you could have one dirty bit/word so on replacement 

you’d need to write only the words that are dirty
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Hiding memory latency

• On write-through, the processor has to wait till the memory has 
stored the data

• Inefficient since the store does not prevent the processor to 
continue working

• To speed-up the process, have write buffers between cache and 
main memory
– write buffer is a (set of) temporary register that contains the 

contents and the address of what to store in main memory

– The store to main memory from the write buffer can be done while 
the processor continues processing

• Same concept can be applied to dirty blocks in write-back policy
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Coherency: caches and I/O

• In general I/O transfers occur directly to/from memory 
from/to disk

• What happens for memory to disk
– With write-through memory is up-to-date. No problem

– With write-back, need to “purge” cache entries that are dirty 
and that will be sent to the disk

• What happens from disk to memory
– The entries in the cache that correspond to memory 

locations that are read from disk must be invalidated

– Need of a valid bit in the cache (or other techniques)
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Reducing Cache Misses with  more 
“Associativity” -- Victim caches

• Example of an “hardware assist”

• Victim cache: Small fully-associative buffer “behind” 
the cache and “before” main memory

• Of course can also exist if cache hierarchy (behind 
L1

• And before L2, or behind L2 and before main 
memory)

• Main goal: remove some of the conflict misses in 
direct-mapped caches (or any cache with low 
associativity)
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Index + Tag

Cache

Victim Cache1. Hit

2.Miss in L1; Hit in VC; Send 
data to register and swap

3. From next level 
of memory 
hierarchy

3’. 
evicted
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Operation of a Victim Cache

• 1. Hit in L1; Nothing else needed

• 2. Miss in L1 for block at location b, hit in victim cache 
at location v: swap contents of  b and v (takes an 
extra cycle) 

• 3. Miss in L1, miss in victim cache : load missing item 
from next level and put in L1; put entry replaced in L1 
in victim cache; if victim cache is full, evict one of its 
entries.

• Victim buffer of 4 to 8 entries for a 32KB direct-
mapped cache works well.


