
05/21/03 CSE 378 Cache Performance 1

Performance metrics for caches

• Basic performance metric: hit ratio h
h = Number of memory references that hit in the cache /

 total number of memory references
Typically h = 0.90 to 0.97

• Equivalent metric: miss rate m = 1 -h
• Other important metric: Average memory access time

Av.Mem. Access time = h * Tcache + (1-h) * Tmem

where Tcache is the time to access the cache (e.g., 1 cycle)
and
 Tmem is the time to access main memory (e.g., 50 cycles)

(Of course this formula has to be modified the obvious way if
you have a hierarchy of caches)

05/21/03 CSE 378 Cache Performance 2

Parameters for cache design

• Goal: Have h as high as possible without paying too much for
Tcache

• The bigger the cache size (or capacity), the higher h.
– True but too big a cache increases Tcache

– Limit on the amount of “real estate” on the chip (although this limit
is not present for 1st level caches)

• The larger the cache associativity, the higher h.
– True but too much associativity is costly because of the number of

comparators required and might also slow down Tcache (extra logic
needed to select the “winner”)

• Block (or line) size
– For a given application, there is an optimal block size but that

optimal block size varies from application to application

05/21/03 CSE 378 Cache Performance 3

Parameters for cache design (ct’d)

• Write policy (see later)
– There are several policies with, as expected, the most

complex giving the best results

• Replacement algorithm (for set-associative caches)
– Not very important for caches with small associativity (will be

very important for paging systems)

• Split I and D-caches vs. unified caches.
– First-level caches need to be split because of pipelining that

requests an instruction every cycle. Allows for different
design parameters for I-caches and D-caches

– Second and higher level caches are unified (mostly used for
data)

05/21/03 CSE 378 Cache Performance 4

Example of cache hierarchies (don’t quote me

on these numbers)

MICRO L1 L2

Alpha 21064 8K(I), 8K(D), WT,
1-way, 32B

128K to 8MB,WB,
1-way,32B

Alpha 21164 8K(I), 8K(D), WT,
1-way, 32B ,D l-u fr.

96K, WB, on-chip,
3-way,32B,l-u free

Alpha 21264 64K(I), 64K(D),?,
2-way, ?

up to 16MB

Pentium 8K(I),8K(D),both,
2-way, 32 B

Depends

Pentium II, III 16K(I),16K(D), WB,
4-way(I),2-way(D),
32B,l-u free

512K,32B,4-way,
tightly-coupled

05/21/03 CSE 378 Cache Performance 5

Examples (cont’d)

PowerPC 620 32K(I),32K(D),WB
8-way, 64B

1MB TO 128MB,
WB, 1-way

MIPS R10000 32K(I),32K(D),l-u,
2-way, 32B

512K to 16MB,
2-way, 32B

SUN UltraSparcIII 32K(I),64K(D),l-u, 4-8MB 1-way
 4 -way

AMD K7 64k(I), 64K(D)

05/21/03 CSE 378 Cache Performance 6

Back to associativity

• Advantages
– Reduces conflict misses

• Disadvantages
– Needs more comparators

– Access time is longer (need to choose among the
comparisons, i.e., need of a multiplexor)

– Replacement algorithm is needed and could get more
complex as associativity grows

05/21/03 CSE 378 Cache Performance 7

Replacement algorithm

• None for direct-mapped

• Random or LRU or pseudo-LRU for set-associative
caches
– LRU means that the entry in the set which has not been

used for the longest time will be replaced (think about a
stack)

05/21/03 CSE 378 Cache Performance 8

Impact of associativity on performance

Direct-mapped

2-way
4-way

8-way

Typical curve.

Biggest improvement from
direct-mapped to 2-way; then 2
to 4-way then incremental

Miss ratio

05/21/03 CSE 378 Cache Performance 9

Impact of block size

• Recall block size = number of bytes stored in a cache
entry

• On a cache miss the whole block is brought into the
cache

• For a given cache capacity, advantages of large
block size:
– decrease number of blocks: requires less real estate for tags
– decrease miss rate IF the programs exhibit good spatial

locality
– increase transfer efficiency between cache and main

memory

• For a given cache capacity, drawbacks of large block
size:
– increase latency of transfers
– might bring unused data IF the programs exhibit poor spatial

locality
– Might increase the number of conflict/capacity misses

05/21/03 CSE 378 Cache Performance 10

Classifying the cache misses:The 3 C’s

• Compulsory misses (cold start)
– The first time you touch a block. Reduced (for a given cache

capacity and associativity) by having large block sizes

• Capacity misses
– The working set is too big for the ideal cache of same

capacity and block size (i.e., fully associative with optimal
replacement algorithm). Only remedy: bigger cache!

• Conflict misses (interference)
– Mapping of two blocks to the same location. Increasing

associativity decreases this type of misses.

• There is a fourth C: coherence misses (cf.
multiprocessors)

05/21/03 CSE 378 Cache Performance 11

Impact of block size on performance

Miss ratio

8
bytes

16 bytes
32 bytes

64 bytes

128
bytes

Typical form of the curve.
The knee might appear for
different block sizes
depending on the
application and the cache
capacity

05/21/03 CSE 378 Cache Performance 12

Performance revisited

• Recall Av.Mem. Access time = h * Tcache + (1-h) * Tmem

• We can expand on Tmem as Tmem = Tacc + b * Ttra

– where Tacc is the time to send the address of the block to
main memory and have the DRAM read the block in its own
buffer, and

– Ttra is the time to transfer one word (4 bytes) on the memory
bus from the DRAM to the cache, and b is the block size (in
words) (might also depend on width of the bus)

• For example, if Tacc = 5 and Ttra = 1, what cache is best
between
– C1 (b1 =1) and C2 (b2 = 4) for a program with h1 = 0.85 and

h2=0.92 assuming Tcache = 1 in both cases.

05/21/03 CSE 378 Cache Performance 13

Writing in a cache

• On a write hit, should we write:
– In the cache only (write-back) policy

– In the cache and main memory (or next level cache) (write-
through) policy

• On a cache miss, should we
– Allocate a block as in a read (write-allocate)

– Write only in memory (write-around)

05/21/03 CSE 378 Cache Performance 14

Write-through policy

• Write-through (aka store-through)
– On a write hit, write both in cache and in memory
– On a write miss, the most frequent option is write-around, i.

e., write only in memory

• Pro:
– consistent view of memory ;
– memory is always coherent (better for I/O);
– more reliable (no error detection-correction “ECC” required

for cache)

• Con:
– more memory traffic (can be alleviated with write buffers)

05/21/03 CSE 378 Cache Performance 15

Write-back policy

• Write-back (aka copy-back)
– On a write hit, write only in cache (requires dirty bit)

– On a write miss, most often write-allocate (fetch on miss) but
variations are possible

– We write to memory when a dirty block is replaced

• Pro-con reverse of write through

05/21/03 CSE 378 Cache Performance 16

Cutting back on write backs

• In write-through, you write only the word (byte) you
modify

• In write-back, you write the entire block
– But you could have one dirty bit/word so on replacement

you’d need to write only the words that are dirty

05/21/03 CSE 378 Cache Performance 17

Hiding memory latency

• On write-through, the processor has to wait till the memory has
stored the data

• Inefficient since the store does not prevent the processor to
continue working

• To speed-up the process, have write buffers between cache and
main memory
– write buffer is a (set of) temporary register that contains the

contents and the address of what to store in main memory

– The store to main memory from the write buffer can be done while
the processor continues processing

• Same concept can be applied to dirty blocks in write-back policy

05/21/03 CSE 378 Cache Performance 18

Coherency: caches and I/O

• In general I/O transfers occur directly to/from memory
from/to disk

• What happens for memory to disk
– With write-through memory is up-to-date. No problem

– With write-back, need to “purge” cache entries that are dirty
and that will be sent to the disk

• What happens from disk to memory
– The entries in the cache that correspond to memory

locations that are read from disk must be invalidated

– Need of a valid bit in the cache (or other techniques)

05/21/03 CSE 378 Cache Performance 19

Reducing Cache Misses with more
“Associativity” -- Victim caches

• Example of an “hardware assist”

• Victim cache: Small fully-associative buffer “behind”
the cache and “before” main memory

• Of course can also exist if cache hierarchy (behind
L1

• And before L2, or behind L2 and before main
memory)

• Main goal: remove some of the conflict misses in
direct-mapped caches (or any cache with low
associativity)

05/21/03 CSE 378 Cache Performance 20

Index + Tag

Cache

Victim Cache1. Hit

2.Miss in L1; Hit in VC; Send
data to register and swap

3. From next level
of memory
hierarchy

3’.
evicted

05/21/03 CSE 378 Cache Performance 21

Operation of a Victim Cache

• 1. Hit in L1; Nothing else needed

• 2. Miss in L1 for block at location b, hit in victim cache
at location v: swap contents of b and v (takes an
extra cycle)

• 3. Miss in L1, miss in victim cache : load missing item
from next level and put in L1; put entry replaced in L1
in victim cache; if victim cache is full, evict one of its
entries.

• Victim buffer of 4 to 8 entries for a 32KB direct-
mapped cache works well.

