CSE 378 AA

Quiz Section #1

· First of all, who am I?

Vadim Lobanov (vadim@cs.washington.edu)

Office hours: Tuesday, 11:30 – 12:30, in Sieg 226

· Numbers

We normally count in a base-ten system.

This is a positional number system – that is, every digit of a number counts differently depending on its place within the number. What does this mean?

Example: 584.110 = 5 x 102 + 8 x 101 + 4 x 100 + 1 x 10-1.

In general, suppose we have a number UVWX.YZN
Note that U, V, W, X, Y, and Z are all going to be in the range 0 to N-1

This number is (by decomposition) equivalent to…

U x N3 + V x N2 + W x N1 + X x N0 + Y x N-1 + Z x N-2
Can extend this to any number of digits in both directions from the ‘.’

· 1 + 1 = 10?

Computers represent numbers in a binary (base-two) system.

Why? Because each bit can be either 0 (0-1 volts) or 1 (2-4 volts), so a binary representation is convenient.

Example: 0110 11012 = 10910.

· Binary pluses and minuses

Remember that:
0 + 0 = 0
0 + 1 = 1




1 + 0 = 1
1 + 1 = 0 with a carry of 1

So addition and subtraction work as normal. Examples:



   1011


  1011



+ 1010


- 0110


 10101


  0101

· Binary to decimal conversion

Use the same formula as above for obtaining the (decimal) value of a binary number. Examples…

10112 = 1 x 23 + 0 x 22 + 1 x 21 + 1 x 20 = 1110
1001.12 = 1 x 23 + 0 x 22 + 0 x 21 + 1 x 20 + 1 x 2-1 = 9.510
· Decimal to binary conversion

Slightly trickier. Keep dividing the number by two, writing out the remainder bits. Then read the remainder bits backwards. Confusing? Yep.

Here’s an example – convert 5610 into binary:




Quotient
Remainder


56 / 2
    28

       0



28 / 2
    14

       0



14 / 2
     7

       0



  7 / 2
     3

       1



  3 / 2
     1

       1



  1 / 2
     0

       1           read this way

So 5610 = 1110002
Why does this work? Well, suppose we have a number A. If we take A % 2, then we get the least significant (rightmost) bit of the binary representation of A. So, if we keep repeating this process, we will obtain the binary representation of A, one bit at a time, from right to left.

· Octal and Hexadecimal (hex)…

Octal is a base-eight system. Hexadecimal is base-sixteen. Why are they used? For convenience. Consider that integers (nowadays) are 32 bits in size – writing out 32 bits is a pain. In hex, digits are 0 to 9, then A to F. Here are some sample conversions…

100111100012 to octal and hex:

010 | 011 | 110 | 001 = 23618 and 0100 | 1111 | 0001 = 4F116
5610 to octal and hex: use the same process as for binary, but divide by 8 or 16

5610 = 708 and 5610 = 3816
49AE16 = 0100 1001 1010 11102
49AE16 = 4 x 163 + 9 x 162 + 10 x 161 + 14 x 160 = 1886210
· 5 + (-5) = 0, right?

Well, so far so good. But, how do we represent a negative number? Three ways.

All use the most significant (leftmost) bit as the sign bit, the other 31 are the value bits. A sign bit of 0 means the number is positive; a sign bit of 1 means the number is negative.

· Sign and magnitude

The lower 31 bits tell the absolute value of the number, and the other bit tells if it is positive or negative. Simple, right? No, not really – there are two representations of zero (0000… and 1000…), and addition and subtraction is not very intuitive. Can we do better?

· Ones-complement

The binary representation of a negative number is the bitwise complement of the binary representation of the positive number.

-310 = complement(00112) = 11002.

Arithmetic still slightly tricky (bit carry issues). And still two representations for zero (0000… and 1111…). Again, can we do better?

· Twos-complement

The binary representation of a negative number is the bitwise complement of the binary representation of the positive number, plus 1. Works for getting negatives of both positive numbers and negative numbers.

-310 = complement(00112) + 12 = 11002 + 12 = 11012.

Fixes all the problems, too!

Inspiration: the number wheel. Let us work with N bit numbers. Draw a circle, and along it write down 000…000 through 111…111. Then, in the same order, write down 0 through 2N – 1, then –2N through –1.

For N = 4, we get:

      0,       1,       2,       3,       4,       5,       6,       7,      -8,     -7,     -6,      -5,      -4,

0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100,

     -3,      -2,     -1

1101, 1110, 1111

Note that we can represent negative numbers to one “higher” than positive numbers. That is because one of the positive number representations is used for zero.

In converting negative twos-complement binary numbers to decimal, use the absolute value binary representation. In converting negative decimal numbers to twos-complement, convert the absolute value of the number to twos-complement, and then “twos-complement” negate it.

· Twos-complement arithmetic

Addition – same as regular binary addition. Subtraction – addition of the negative of the subtracted number.

Example: 4 – 3 becomes:
   0100





+ 1101




   0001   (discard final carry) = 110.

· Overflow

The operations as defined above can overflow. For example, let’s try (-7) + (-6), while limiting numbers to 4 bits…
   1001






+ 1010





   0011  (final carry discarded) = 310.

Definitely the wrong answer.

How do we know when overflow occurred?

Summing two positive numbers gives a negative result.

Summing two negative numbers gives a positive result.

Summing a positive and a negative number will never overflow. Why?

· Random trickery

Here is another way to tell overflow…

We let x be the carry bit from the second most significant bit to the most significant bit. We let y be the carry bit from the most significant bit.

Overflow occurred if x is not equal to y.

· Extending this knowledge :)

Suppose we have a number written in twos-complement form, in M bits. Suppose we now want to write this number in N bits, where N > M. To fill in the remaining high-order bits, we set them to the same thing as the number’s original highest-order bits. For unsigned form, we always fill the new bits to 0.

Example: extend 01102 and 10012 to 8 bits, when both are in twos-complement form.

01102 becomes 000001102 and 10012 becomes 111110012.
· A word about SMOK…

A program where you can build a machine from hardware parts, and then simulate it’s execution.

Recent versions have become a lot better.

Some things never change, however. Save often, and many times.

· In the future

Get familiar with SPIM – you will need it.

Information is linked from the CSE 378 homepage.

