
5/8/2003 CSE378 Pipelining Control unit and
hazards

1

Pipeline Control unit (highly abstracted)

IF ID EX Mem WB

IF/ID

ID/EX

EX/Mem
Mem/WB

Control
Unit

5/8/2003 CSE378 Pipelining Control unit and
hazards

2

Where are the control signals needed?

• Very much like in multiple cycle implementation for the
case of an ideal pipeline

• Cf. Figure 6.25

5/8/2003 CSE378 Pipelining Control unit and
hazards

3

Control (ideal case)

• Control signals are split among the 5 stages. For the ideal
case no need for additional control (but just wait!)

• Stage 1: nothing special to control
– read instr. memory and increment PC asserted at each cycle

• Stage 2: nothing. All instructions do the same
• Stage 3: Instruction dependent

– Control signals for ALU sources and ALUop
– Control signal for Regdest so the right name is passed along

• Stage 4: Control for memory (read/write) and for branches
• Stage 5: Control for source of what to write in the

destination register

5/8/2003 CSE378 Pipelining Control unit and
hazards

4

Hazards

• Recall
– structural hazards: lack of resources (won’t happen in our simple

pipeline)
– data hazards: due to dependencies between executing instructions
– control hazards: flow of control is not sequential

5/8/2003 CSE378 Pipelining Control unit and
hazards

5

Data dependencies

• The result of an operation is needed before it is stored back
in the register file
– Example:
add $7, $12, $15 # put result in register 7
sub $8, $7, $12 # use register 7 as a source
and $9, $14, $7 # use register 7 as a source
– The above dependence is called RAW (Read After Write)
– Note that there is no dependency for register 12 which is used as a

source in two operations
– WAW (Write After Write) and WAR (Write After Read)

dependencies can exist but not in our simple pipeline

5/8/2003 CSE378 Pipelining Control unit and
hazards

6

Data dependencies in the pipe

Add $7,$12,$15

Sub $8,$7,$12

And $9, $14, $7

$7 written here

$7 needed here

$7 needed here

5/8/2003 CSE378 Pipelining Control unit and
hazards

7

Occurrences of data dependencies (detection)

• Data dependence (RAW) occurs when:
– An instruction wants to read a register in stage 2, and
– One instruction in either stage 3 or stage 4 is going to write that

register
• Note that if the instruction writing the register is in stage 5, this is fine

since we can write a register and read it in the same cycle

• Data dependencies can occur between:
– Arithmetic instructions
– A load and an arithmetic instruction needing the result of a load
– An arithmetic instruction and a load/store (to compute the address)
– An arithmetic instruction and a branch (to compare registers)

5/8/2003 CSE378 Pipelining Control unit and
hazards

8

Resolving data dependencies
(Potential solutions)

• There are several possibilities:
– Have the compiler generate “no-ops”, i.e., instructions that do

nothing while passing through the pipeline (original MIPS at Stanford;
found to be too complex)

– Stall the pipeline when the hardware detects the dependency, i.e.,
create bubbles (the resulting delays are the same as for no-ops)

– Forwarding the result, generated in stage 3 or stage 4, to the
appropriate input of the ALU. This is called forwarding or
bypassing. (certainly more performance efficient at the cost of
more hardware

• In the case of a simple (unique) pipeline, cost is slightly more control
and extra buses

• If there were several pipelines, say n, communication grows as O(n2)

5/8/2003 CSE378 Pipelining Control unit and
hazards

9

Detection of data dependencies

• When an instruction reaches stage 2, the control unit will
detect whether the names of the result registers of the two
previous instructions match the name of the source
registers for the current instruction.
– Examples: EX/Mem write-register name = ID/EX rs

Mem/WB write-register name = ID/EX rt
etc …

5/8/2003 CSE378 Pipelining Control unit and
hazards

10

Example of stalls

Add $7,$12,$15

Sub $8,$7,$12

And $9, $14, $7

$7 written here

$7 read here

5/8/2003 CSE378 Pipelining Control unit and
hazards

11

How to detect stalls and additional control

• Between instruction i+1 and instruction i (2 bubbles)
ID/EX write-register = IF/ID read-register 1 or IF/ID read-register 2

• Between instruction i+2 and instruction i (1 bubble)
EX/Mem write-register = IF/ID read-register1or IF/ID read-register 2

• Note that we are stalling an instruction in stage 2 (decode)
thus
– We must prevent fetching new instructions (otherwise PC and

current instruction would be clobbered in IF/ID)
– so control to create bubbles (set all control lines to 0 from stage 2

on) and prevent new instruction fetches

5/8/2003 CSE378 Pipelining Control unit and
hazards

12

Forwarding

• Bubbles (or no-ops) are pessimistic since result is present
before stage 5
– In stage 3 for arithmetic instructions
– In stage 4 for loads

• So why not forward directly the result from stage 3 (or 4)
to the ALU

• Note that the state of the process (i.e., writing in registers)
is still modified only in stage 5
– The importance of this will become clear when we look at

exceptions.

5/8/2003 CSE378 Pipelining Control unit and
hazards

13

Forwarding in the pipe

Add $7,$12,$15

Sub $8,$7,$12

And $9, $14, $7

$7 computed here

$7 needed here

$7 needed here

$7 written in register here

5/8/2003 CSE378 Pipelining Control unit and
hazards

14

Forwarding implementation

• Add busses to the data path so that inputs to ALU can be
taken from
– register file
– EX/Mem pipeline register
– Mem/WB pipeline register

• Have a “control forwarding unit” that detects
– forwarding between instructions i+1 and i and between instructions

i+2 and i (note that both can happen at the same time for the two
sources)

• Expand muxes to allow these new choices

5/8/2003 CSE378 Pipelining Control unit and
hazards

15

Still need for stalling

• Alas, we can’t get rid of bubbles completely because the
result of a load is only available at the end of stage 4
– Example : Lw $6, 0($2)

Add $7,$6,$4
We need to stall for 1 cycle and then forward

5/8/2003 CSE378 Pipelining Control unit and
hazards

16

The Load stalling case

Lw $6, 0($2)

Add $7,$6,$4

$6 available here

