Drawbacks of single cycle implementation

* All instructions take the same time although
— some instructions are longer than others;

» e.g. load 1s longer than add since it has to access data memory in
addition to all the other steps that add does

— thus the “cycle” has to be for the “longest path”

« Some combinational units must be replicated since used in
the same cycle

— e.g., ALU for computing branch address and ALU for computing
branch outcome

* but this 1s no big deal

4/29/2003 CSE378 Multicycle impl,.



Alternative to single cycle

« Have a shorter cycle and instructions execute in multiple
(shorter) cycles

* The (shorter) cycle time determined by the longest delay in
individual functional units (e.g., memory or ALU etc.)

» Possibility to streamline some resources since they will be
used at different cycles

 Since there is need to keep information “between cycles”,

we’ll need to add some stable storage (registers) not visible
at the ISA level

* Not all mstructions will require the same number of cycles

4/29/2003 CSE378 Multicycle impl,. 2



Multiple cycle implementation

* Follows the decomposition of the steps for the execution
of instructions

Cycle 1. Instruction fetch and increment PC

Cycle 2. Instruction decode and read source registers and branch
address computation

Cycle 3. ALU execution or memory address calculation or set PC
if branch successful

Cycle 4. Memory access (load/store) or write register (arith/log)
Cycle 5 Write register (load)

« Note that branch takes 3 cycles, load takes 5 cycles, all
others take 4 cycles

4/29/2003

CSE378 Multicycle impl,.



Instruction fetch

 Because fields in the instruction are needed at different
cycles, the instruction has to be kept in stable storage,
namely an /nstruction Register (IR)

« The register transfer level actions during this step
IR <~ Memory[PC]
PC < PC+4

» Resources required

— Memory (but no need to distinguish between instruction and data
memories although we will because alter on the need will
reappear)

— Adder to increment PC
— IR

4/29/2003 CSE378 Multicycle impl,.



Instruction decode and read source registers

 Instruction decode: send opcode to control unit and...(see
later)

e Perform “optimistic” computations that are not harmful

— Read rs and rt and store them in non-ISA visible registers A and B
that will be used as input to ALU

A < REG[IR[25:21]] (read rs)
B < REG[IR[20:16]] (read rt)
— Compute the branch address just in case we had a branch!
ALUout <« PC +(sign-ext(IR[15:0]) *4 (ALUout 1s also a non-1S4
visible register)
 New resources
— A, B, ALUout

4/29/2003 CSE378 Multicycle impl,.



ALU execution

 If instruction 1s R-type
ALUout <A op. B

 If instruction 1s Immediate
ALUout «A op. sign-extend(IR[15:0])

 If instruction 1s Load/Store
ALUout < A + sign-extend(IR[15:0])

e [finstruction is branch

If (A=B) then PC <« ALUout (note this 1s the ALUout computed in
the previous cycle)

No new resources

4/29/2003 CSE378 Multicycle impl,.



Memory access or ALU completion

If Load

MDR < Memory[ALUout] (MDR 1s the Memory Data Register
non-ISA visible register)

If Store
Memory[ALUout] < B

If arith
Reg[IR[15:11]] <~ ALUout

New resources
— MDR

4/29/2003 CSE378 Multicycle impl,.



Load completion

» Write result register
Reg[IR[20:16]] <~ MDR

4/29/2003 CSE378 Multicycle impl,.



Streamlining of resources (cf. Figure 5.31)

* No distinction between instruction and data memory
* Only one ALU

« But a few more muxes and registers (IR, MDR etc.)

4/29/2003 CSE378 Multicycle impl,.



