
4/29/2003 CSE378 Multicycle impl,. 1

Drawbacks of single cycle implementation

• All instructions take the same time although
– some instructions are longer than others;

• e.g. load is longer than add since it has to access data memory in
addition to all the other steps that add does

– thus the “cycle” has to be for the “longest path”

• Some combinational units must be replicated since used in
the same cycle
– e.g., ALU for computing branch address and ALU for computing

branch outcome
• but this is no big deal

4/29/2003 CSE378 Multicycle impl,. 2

Alternative to single cycle

• Have a shorter cycle and instructions execute in multiple
(shorter) cycles

• The (shorter) cycle time determined by the longest delay in
individual functional units (e.g., memory or ALU etc.)

• Possibility to streamline some resources since they will be
used at different cycles

• Since there is need to keep information “between cycles”,
we’ll need to add some stable storage (registers) not visible
at the ISA level

• Not all instructions will require the same number of cycles

4/29/2003 CSE378 Multicycle impl,. 3

Multiple cycle implementation

• Follows the decomposition of the steps for the execution
of instructions
– Cycle 1. Instruction fetch and increment PC
– Cycle 2. Instruction decode and read source registers and branch

address computation
– Cycle 3. ALU execution or memory address calculation or set PC

if branch successful
– Cycle 4. Memory access (load/store) or write register (arith/log)
– Cycle 5 Write register (load)

• Note that branch takes 3 cycles, load takes 5 cycles, all
others take 4 cycles

4/29/2003 CSE378 Multicycle impl,. 4

Instruction fetch

• Because fields in the instruction are needed at different
cycles, the instruction has to be kept in stable storage,
namely an Instruction Register (IR)

• The register transfer level actions during this step
IR ← Memory[PC]
PC ← PC + 4

• Resources required
– Memory (but no need to distinguish between instruction and data

memories although we will because alter on the need will
reappear)

– Adder to increment PC
– IR

4/29/2003 CSE378 Multicycle impl,. 5

Instruction decode and read source registers

• Instruction decode: send opcode to control unit and…(see
later)

• Perform “optimistic” computations that are not harmful
– Read rs and rt and store them in non-ISA visible registers A and B

that will be used as input to ALU
A ← REG[IR[25:21]] (read rs)
B ← REG[IR[20:16]] (read rt)
– Compute the branch address just in case we had a branch!
ALUout ← PC +(sign-ext(IR[15:0]) *4 (ALUout is also a non-ISA

visible register)
• New resources

– A, B, ALUout

4/29/2003 CSE378 Multicycle impl,. 6

ALU execution

• If instruction is R-type
ALUout ←A op. B

• If instruction is Immediate
ALUout ←A op. sign-extend(IR[15:0])

• If instruction is Load/Store
ALUout ← A + sign-extend(IR[15:0])

• If instruction is branch
If (A=B) then PC ← ALUout (note this is the ALUout computed in

the previous cycle)

• No new resources

4/29/2003 CSE378 Multicycle impl,. 7

Memory access or ALU completion

• If Load
MDR ← Memory[ALUout] (MDR is the Memory Data Register

non-ISA visible register)

• If Store
Memory[ALUout] ← B

• If arith
Reg[IR[15:11]] ← ALUout

• New resources
– MDR

4/29/2003 CSE378 Multicycle impl,. 8

Load completion

• Write result register
Reg[IR[20:16]] ← MDR

4/29/2003 CSE378 Multicycle impl,. 9

Streamlining of resources (cf. Figure 5.31)

• No distinction between instruction and data memory
• Only one ALU
• But a few more muxes and registers (IR, MDR etc.)

