
06/04/03 CSE 378 I/O 1

Input-output

• I/O is very much architecture/system dependent

• I/O requires cooperation between
– processor that issues I/O command (read, write etc.)

– buses that provide the interconnection between processor, memory
and I/O devices

– I/O controllers that handle the specifics of control of each device
and interfacing

– devices that store data or signal events

06/04/03 CSE 378 I/O 2

Basic (simplified) I/O architecture

CPU

Cache

M.Cont. D.Cont. N.Interface

Main
memory Disks Network

Bus

06/04/03 CSE 378 I/O 3

Types of I/O devices

• Input devices
– keyboard, mouse

• Output devices
– screen, line printer

• Devices for both input and output
– disks, network interfaces

06/04/03 CSE 378 I/O 4

An important I/O device: the disk

track

sector

Disk surface
Read-write heads

platters

Cylinder

06/04/03 CSE 378 I/O 5

Secondary memory (disks)

• Physical characteristics
– Platters (1 to 20) with diameters from 1.3 to 8 inches (recording on

both sides)

– Tracks (1,000 to 10,000)

– Cylinders (all the tracks in the same position in the platters)

– Sectors (e.g., 128-256 sectors/track with gaps and info related to
sectors between them; typical sector 512 bytes)

– Current trend: constant bit density, i.e., more info (sectors) on outer
tracks

06/04/03 CSE 378 I/O 6

Example: IBM Ultrastar 146Z10

• Disk for server
– 146 GB

– 8 MB cache

– 10,000 RPM

– 3 ms average latency

– Up to 6 platters; Up to 12 heads

– Average seek latency 4.7 ms

– Sustained transfer rate 33-66 MB/s

06/04/03 CSE 378 I/O 7

Disk access time

• Arm(s) with a reading/writing head
• Four components in an access:

– Seek time (to move the arm on the right cylinder). From 0 (if arm
already positioned) to a maximum of 15-20 ms. Not a linear
function. Smaller disks have smaller seek times.

 Ultrastar example: Average seek time = 4.7 ms;
• My guess: track to track 0.5 ms; longest (inmost strack to outmost

track) 8 ms

• Rotation time (on the average 1/2 rotation). At 3600
RPM, 8.3 ms. Current disks are 3600 or 5400 or
7200 or even 10,000 RPM (e.g., the Ultrastar, hence
average is 3 ms)

06/04/03 CSE 378 I/O 8

Disk access time (ct’d)

– Transfer time depends on rotation time, amount to transfer
(minimal size a sector), recording density, disk/memory
connection. Today, transfer time occurs at 6 to 66 MB/second

– Disk controller time. Overhead to perform an access (of the order
of 1 ms)

– But … many disk controllers have a cache that contains recently
accessed sectors. If the I/O requests hits in the cache, the only
components of access time are disk controller time and transfer
time (which is then of the order of 40 MB/sec). Cache is used to
prefetch on read.

06/04/03 CSE 378 I/O 9

Improvements in disks

• Capacity (via density). Same growth rate as DRAMs

• Price decrease has followed (today $5-$50/GB?)

• Access times have decreased but not enormously
– Higher density -> smaller drives -> smaller seek time

– RPM has increased slightly 3600 upto 10,000 (rarely)

– Transfer time has improved

• CPU speed - DRAM access is one “memory wall”

• DRAM access time - Disk access time is a “memory gap”
– Technologies to fill the gap have not succeeded (currently the most

promising is more DRAM backed up by batteries)

06/04/03 CSE 378 I/O 10

Connecting CPU, Memory and I/O

CPU

Cache

CPU-Memory bus

I/O bus

Bus
adapter Main

memory

I/O contr. I/O contr. I/O contr.

disk Graphics

Network

06/04/03 CSE 378 I/O 11

Buses

• Simplest interconnect
– Low cost: set of shared wires
– Easy to add devices (although variety of devices might make the

design more complex or less efficient -- longer bus and more
electrical load; hence the distinction between I/O buses and CPU/
memory buses)

– But bus is a single shared resource so can get saturated (both
physically because of electrical load, and performance-wise
because of contention to access it)

• Key parameters:
– Width (number of lines:data, addresses, control)
– Speed (limited by length and electrical load)

06/04/03 CSE 378 I/O 12

Memory and I/O buses

• CPU/memory bus: tailored to the particular CPU
– Fast (separate address and data lines; of course separate control

lines)

– Often short and hence synchronous (governed by a clock)

– Wide (64-128 and even 256 bits)

– Expensive

• I/O bus: follows some standard so many types of devices
can be hooked on to it
– Asynchronous (hand-shaking protocol)

– Narrower

06/04/03 CSE 378 I/O 13

Bus transactions

• Consists of arbitration and commands
– Arbitration: who is getting control of the bus

– Commands: type of transaction (read, write, ack, etc…)

• Read, Write, Atomic Read-Modify-Write (atomic swap)
– Read: send address and data is returned

– Write: send address and data

– Read-Modify-write : keep bus during the whole transaction. Used
for synchronization between processes

06/04/03 CSE 378 I/O 14

Bus arbitration

• Arbitration: who gets the bus if several requests occur at
the same time
– Only one master (processor): centralized arbitration

– Multiple masters (most common case): centralized arbitration
(FIFO, daisy-chain, round-robin, combination of those) vs.
decentralized arbitration (each device knows its own priority)

• Communication protocol between master and slave
– Synchronous (for short buses - no clock skew - i.e. CPU/memory)

– Asynchronous (hand-shaking finite-state machine; easier to
accommodate many devices)

06/04/03 CSE 378 I/O 15

Hand-shaking protocol

• Example : Master (CPU) requests data from Slave (Mem)
1. Master transmits a read request (control lines) and address (address/

data lines)
2. Slave recognizes the request. Grabs the address and raises the Ack

control line.
3. Master sees the Ack line high. Releases the request and data lines
4. Slave sees the Read request low. Releases the Ack line
5. Slave is ready to transmit data. Places data on data lines and raises

Data ready (control line)
6. Master sees Data ready high. Grabs data and raises Ack
7. Slave sees Ack high. Releases data line and Data Ready
8. Master sees Data Ready low. Releases Ack. Transaction is finished

06/04/03 CSE 378 I/O 16

Split-transaction buses

• Split a read transaction into
– Send address (CPU is master)

– Send data (Memory is master)

– In between these two transactions (memory access time) the bus is
freed

– Requires “tagging” the transaction

• Can even have more concurrency by having different
transactions using the data and address lines concurrently

• Useful for multiprocessor systems and for I/O

06/04/03 CSE 378 I/O 17

I/O Hardware-software interface

• I/O is best left to the O.S. (for protection and scheduling in
particular)

• O.S. provides routines that handles devices (or controllers)

• But since O.S. is a program, there must be instructions to
generate I/O commands

• CPU must be able to:
– tell a device what it wants done (e.g., read, write, etc.)

– start the operation (or tell the device controller to start it)

– find out when the operation is completed (with or without error)

• No unique way to do all this. Depends on ISA and I/O
architecture

06/04/03 CSE 378 I/O 18

I/O operations

• Specific I/O instructions
– I/O instruction specifies both the device number and a command

(or an address where the I/O device can find a series of commands)

 Example: Intel x86 (IN and OUT between EAX register and an I/O
port whose address is either an immediate or in the DX register)

• Memory-mapped I/O
– Portions of address space devoted to I/O devices (read/write to

these addresses transfer data or are used to control I/O devices)

– Memory ignores these addresses

• In both cases, only the O.S. can execute I/O operations or
read/write data to memory-mapped locations

06/04/03 CSE 378 I/O 19

I/O termination

• Two techniques to know when an I/O operation terminates
– Polling

– Interrupts

• Polling
– CPU repeatedly checks whether a device has completed

– Used for “slow” devices such as the mouse (30 times a second)

• Interrupts
– When the I/O completes it generates an (I/O) interrupt

06/04/03 CSE 378 I/O 20

I/O interrupts

• An interrupt is like an exception
– Exception created by the program (page fault, divide by zero etc.)
– Interrupts occur as a consequence of external stimuli (I/O, power

failure etc.)

• Presence of an interrupt checked on every cycle
• Upon an interrupt, O.S. takes over (context-switch)
• Two basic schemes to handle the interrupt

– Vectored interrupts: the O.S. is told (by the hardware) where to
handle the interrupt

– Use of a cause register. The O.S. has to examine the contents of
that register to transfer to the appropriate handler

06/04/03 CSE 378 I/O 21

Data transfer to/from I/O device

• Can be done either by
– Using the CPU to transfer data from (to) the device to (from

memory.
• Can be done either via polling (programmed I/O operation) or

interrupt

• Slow operation

– Using DMA (direct-memory address)

06/04/03 CSE 378 I/O 22

DMA

• Having long blocks of I/O go through the processor via
load-store is totally inefficient

• DMA (direct memory address) controller:
– specialized processor for transfer of blocks between memory and I/

O devices w/o intervention from CPU (except at beg. and end)

– Has registers set up by CPU for beginning memory address and
count

– DMA device interrupts CPU at end of transfer

– DMA device is a master for the bus

– More complex DMA devices become I/O processors or channels
controllers (with their own stored programs)

06/04/03 CSE 378 I/O 23

DMA and virtual memory

• What if the block to transfer is greater than 1 page
– Address translation registers within the DMA device

• What if the O.S. replaces a page where transfer is taking place
– Pages are “pinned” (locked) during transfer

06/04/03 CSE 378 I/O 24

I/O and caches

• Recall previous discussion
– Write-back caches:

• on output, the O.S. flushes the cache before the page is written out

• on input, blocks in the cache are invalidated

– Write-through caches
• on output, no problem since cache and memory are consistent

• on input, as in write-back

• Other possibilities
– Use a “snoopy” protocol (cache controller listen to transactions on

the memory bus and reacts accordingly)

– Have the I/O go through the cache (but not very efficient)

06/04/03 CSE 378 I/O 25

Disk arrays

• Reliability: is anything broken?

• Availability: is the system still usable?

• Availability can be improved by adding more hardware (e.
g.,ECC, disk arrays) that provides some redundancy

• In the case of I/O, simplest redundant system is mirroring:
write each data on two disks.
– Cost: double the amount of hardware

– Performance: no increase (in fact might be worse for writes since
has to wait for the longest of the two to complete)

06/04/03 CSE 378 I/O 26

RAIDs

• Concept of striping: data written consecutively on N disks

• Performance wise: no improvement in latency but
improvement in throughput (parallelism)

• But now probability of failure is greater

• So add disks (redundant arrays of inexpensive disks)
– Mirroring = RAID1

– RAID 5: interleave the parity sectors on the disks

