
UW CSE378 C Intro 11/17/2003

1

11/17/2003

Some C Basics

CSE378

10/7/2003

11/17/2003

Why C?

• C is fairly low-level
– relatively easy to compile into machine language

• C is widely known
– been around for decades

– big influence on later languages (C++, Java)

– huge installed code base

– closely allied with UNIX

• C is used in our textbook!

11/17/2003

C and 378

• We use it as a convenient way to express 
algorithms

• We use it to illustrate how high-level constructs 
can be translated to machine language

• We look only at a subset of C

• For every feature we look at we could add 
"largely", "in the most common case", "as a first 
approximation" etc.

11/17/2003

Program Structure

C:

• No classes

• Program is a set of 
independent functions

• Functions are all "peers" --
no nesting

• Any number of functions 
per .c file

• Execution starts with main

Java:

• No independent functions 
(methods)

• Program is a set of 
interacting objects 
(instances of classes)

• One public class per .java 
file

• Execution starts with 
main



UW CSE378 C Intro 11/17/2003

2

11/17/2003

Operation and Context

• C is compiled to .o 
(object) file: machine code 
(almost)

• Linker combines .o files to 
an executable (runnable) 
machine language 
program (e.g. .exe)

• Loader/OS places 
executable in memory and 
starts at main  

• Java is compiled to .class 
file: intermediate pseudo-
machine code called "byte 
code"

• Java Virtual Machine 
loads classes as needed, 
links references on the fly, 
interpreting byte code as it 
goes.

11/17/2003

Basic Data Types
• Similar basic types: int, float, double, etc.

– No boolean type in C
– char in C is 8-bit ASCII integer (in almost all current 

implementations)
• char c = 112; //In C is equivalent to char c = 'p'; 

– Java char is 16-bit Unicode

• C: size and format of basic types not quite 
standardized
– tends to reflect the machine being compiled to
– even ints are not required to be any particular size

• Java: basic types are completely specified by the 
Java language

11/17/2003

Scope of Variables
[reminder: "as a first approximation..."]

• Local variables 
(declared inside {}, 
such as a function): 
exist only while the {} 
executes

• Global variables 
(declared outside any 
function): visible 
everywhere

• Local variables: as in 
C

• Nothing exactly like C 
global variables

• Java scope is much 
more complicated than 
C

11/17/2003

Syntax
• Control statements: practically identical

– for, while, if, if/else, switch, return etc.
– C is missing try/catch

• Expression syntax
– practically identical for arithmetic, logical, bit string 

expressions

• Declaration syntax: basically same pattern
type name [= initalValue];
– C and Java have different sets of "decorations" to 

modify declarations



UW CSE378 C Intro 11/17/2003

3

11/17/2003

Function Syntax
• Function (method) declaration: basically 

same pattern
returnType funcName (paramList) {

statements

}

One difference: all declarations must precede all 
statements (at least until very recent versions of 
C)

11/17/2003

Pointers vs References
• A pointer in C is a variable which contains the 

address of (reference to) another variable
– Special syntax used when declaring and using pointers
– if ptr is a pointer, *ptr is what it points to

• In Java, objects are always accessed through 
references.  
– The language syntax does not distinguish between an 

object and the reference (pointer) to it
– References are strictly typed
– Memory allocation and deallocation are automatic

• It's a big deal.  Pointer and memory management 
errors are frequent and serious in C programs.

11/17/2003

Arrays

• Similar in the two languages when [] notation is 
used
– One big difference: in C, the size of the array is not 

encapsulated in it in any way

• In C, an additional view of an array is possible 
(and common):
– The array name is viewed as a pointer, and array 

elements are offsets from this pointer.

– lends itself to translation into machine code

11/17/2003

Strings

• No string type in C

• Strings are represented 
by a universally-
acknowledged 
convention: array of 
characters terminated 
by a null

• Unsafe but efficient

• String is a class in 
Java, in the basic 
java.lang package.

• Safe but not always 
efficient



UW CSE378 C Intro 11/17/2003

4

11/17/2003

Characters, Strings, Arrays, 
Pointers, Booleans: An Example


