
CSE378 Winter 2002 1

Hazards

Why pipelines don’t complete an instruction each cycle

• structural hazards

• instructions in different stages want to use the same
resource in the same cycle

• if not solved, one instruction has to stall
• example: one memory (early SPARCs)

• data hazards

• an instruction needs the result produced by a previous
instruction before it has been written to the register file

• the second instruction is data dependent on the first

• if not solved, the second instruction has to stall
• example: lw $8, 12($9)

add $4, $8, $10
sub $5, $4, $10

• control hazards

• the instruction after a branch needs to be fetched before the
result of the branch condition is determined

• the second instruction is control dependent on the
first

• if not solved, the instruction after the branch has to stall
• example: beq

• all occur because pipelines overlap instruction execution

CSE378 Winter 2002 2

Structural Hazards

Cause of the hazard:

• hardware resource conflicts

• instructions in different stages want to use the same
resource in the same cycle

• rarely, one instruction wants to use the same resource twice
in the same cycle

Solutions :

• more hardware

• separate ALUs for arithmetic, target address calculation,
PC incrementing

• dual-ported register file
• write/read registers on different phases in the same cycle

• separate memory (caches) for instructions & data
• better performance with a little more hardware ---

it’s worth it!

• just stall

• 1 port to memory: service the data access (the older
instruction) before the instruction access

• logic in the MEM stage:
is this a load? if yes, stall the instruction fetch if the next
instruction uses the loaded value

• less hardware, but much lower performance

CSE378 Winter 2002 3

Data Hazards

Cause of the hazard:

• producer-consumer conflict over data values

• an instruction needs data that is produced by a previous
instruction

• the data has not yet been written into a register

• code causes a data dependence

• the implementation causes the data hazard

Solutions :

• compiler code scheduling

• nops (on a processor without pipeline interlocks, aka R2000)

• reordering instructions
• this is an example of where the pipeline is exposed to the

architecture

• hardware

• forwarding
output of one stage (result in that stage’s pipeline register)
sent to the input of a previous stage

• pipelined interlock (stall the pipeline)
hardware stalls the following instructions

CSE378 Winter 2002 4

Dependences vs. Hazards

sub $2, $1, $3

or $13, $6, $2

and $12, $2, $5

add $14, $2, $2

sw $15, 100 ($2)

hazard
data dependence

no hazard

CSE378 Winter 2002 5

Code Scheduling

add $4, $5, $6

sub $7, $8, $4

add $15, $16, $17

addi $18, $19, 256

inserting nops

add $4, $5, $6

nop

add $15, $16, $17

addi $18, $19, 256

nop

sub $7, $8, $4

reordering instructions

add $4, $5, $6

add $15, $16, $17

addi $18, $19, 256

sub $7, $8, $4

CSE378 Winter 2002 6

Code Scheduling

add $4, $5, $6

addi $18, $19, $16

add $15, $16, $17

nop

data dependence

no hazard

nop

sub $7, $8, $4

CSE378 Winter 2002 7

Code Scheduling

add $4, $5, $6

addi $18, $19, $16

add $15, $16, $17

sub $7, $8, $4

data dependence

no hazard

CSE378 Winter 2002 8

Forwarding

Forwarding (also called bypassing):

• output of one stage (the result in that stage’s pipeline register) is
bused (bypassed) to the input of a previous stage

• why forwarding is possible: results are computed 1 or more
stages before they are written to a register

• at the end of the EX stage for computational instructions

• at the end of MEM for a load

• if you forward a result to an ALU input as soon as it has been
computed, you can eliminate or reduce stalling

CSE378 Winter 2002 9

Forwarding Example

add $7, $12, $15

and $9, $13, $7

sub $8, $7, $12

$7 is computed here

$7 is written here

$7 is read here

$7 is read here

$7 is needed here

$7 is needed here

CSE378 Winter 2002 10

Forwarding

Forwarding unit checks to see if values must be forwarded:

• between instructions in ID and EX

• compare the R-type write register number in EX/MEM
pipeline register to each read register number in ID/EX

• between instructions in ID and MEM

• compare the R-type write register number in MEM/WB to
each read register number in ID/EX

• it’s a little more complicated than this

If a match, then forward the appropriate result values to an ALU
source

• bus a value from EX/MEM or MEM/WB to an ALU source

CSE378 Winter 2002 11

Forwarding Hardware

Hardware to implement forwarding:

• destination register number in pipeline registers
(but need it anyway because we need to know which register to
write when storing an ALU or load result)

• source register numbers
(only rs is extra)

• a comparator for each source-destination register pair

• buses to ship data and register numbers --- the BIG cost

• larger ALU MUXes (+ 2 ALU bypass values)

CSE378 Winter 2002 12

Delayed Loads

Delayed load:

• data hazard caused by a load instruction & an immediate use of
the loaded value

• forwarding won’t eliminate the hazard
data not back from memory until the end of the MEM stage

• solutions

• if processor has no hardware interlocks
must schedule independent instructions or nops into the
delay slot : R2000
(hazard exposed to the compiler)

• pipelined interlocks: everyone else

CSE378 Winter 2002 13

Delayed Loads

lw $2, 20($1)

or $8, $2, $6

and $4, $2, $5

add $9, $4, $2

hazard
data dependence

no hazard

$2 is written here

$2 is available here

$2 is needed here

CSE378 Winter 2002 14

Stalling

lw $2, 20($1)

or $8, $2, $6

and $4, $2, $5

add $9, $4, $2

data dependence
no hazard

the bubble

CSE378 Winter 2002 15

Pipelined Interlocks

How pipelined stalls are implemented

Hazard detection unit: stalls the use after a load

• is the instruction in EX a load?

• is the MemRead signal in ID/EX set?

• does the destination register number of the load = either source
register number in the next instruction?

• compare the load write register number in ID/EX to each
read register number in IF/ID

⇒ if yes, stall the pipe 1 cycle

CSE378 Winter 2002 16

Pipelined Interlocks

How stalling is implemented:

• nullify the instruction in the ID stage , the one that uses the
loaded value

• change EX, MEM, WB control signals in ID/EX pipeline
register to 0

• the instruction in the ID stage will have no side effects as it
passes down the pipeline

• repeat the instructions in ID & IF stages

• disable writing the PC --- the same instruction will be
fetched again

• disable writing the IF/ID pipeline register --- the load use
instruction will be decoded & its registers read again

CSE378 Winter 2002 17

Implementing Stalls

Hardware to implement stalling:

• rt register number in ID/EX pipeline register
(but need it anyway because we need to know what register
to write when storing load data)

• both source register numbers in IF/ID pipeline register
(already there)

• a comparator for each source-destination register pair

• buses to ship register numbers

• write enable/disable for PC

• write enable/disable for the IF/ID pipeline register

• a MUX to the ID/EX pipeline register (+ 0s)

CSE378 Winter 2002 18

Code Scheduling vs. Pipelined Interlocks

Pipeline interlocks preferred

• trivial amount of hardware
stall logic needed for cache misses anyway

• smaller code size
no nops when no independent instructions

• higher performance processors can have shorter clock cycles &
more stages

therefore it could have more than one delay slot

MIPS now uses pipeline interlocks!

