
CSE378 Winter 2001 1

Drawbacks of Single-Cycle Implementation

All instructions must complete in 1 cycle (CPI = 1)

• different instructions do different amounts of work,
for example:

• add uses instruction memory, ALU, register file twice

• lw also uses these + data memory

• clock cycle set to the longest instruction

Hardware units can only be used once in the cycle

• some must be replicated (ALU, memory)

• increased hardware costs

CSE378 Winter 2001 2

Alternative to Single-Cycle Implementation

Multicycle implementation

• Each instruction executes in multiple shorter cycles

• Each instruction takes as many cycles as it needs to get its work
done

• Length of a cycle is determined by the delay of individual
functional units

• Fewer resources if some can be reused in different cycles

CSE378 Winter 2001 3

Multiple-cycle Implementation

Break up the execution cycle into steps:

• want each step to contain work that takes about the same
amount of time

• instructions only use the steps they need

(1) instruction fetch

(2) instruction decode & source register(s) read

(3) ALU execution

(4) memory access (read/write) or ALU completion (write the result
register)

(5) write back register for a load

CSE378 Winter 2001 4

Hardware Changes

Add some temporary registers (not visible in the ISA) since some
information that is calculated in one cycle is needed in
subsequent cycles

• instruction register (IR)

• memory data register (MDR)

• ALU source registers, A and B

• ALUOut

Data that is calculated in 1 instruction & needed by subsequent
instructions is stored in ISA-visible state (PC, registers, memory)

Larger or more MUXes

• MUX to memory address

• MUX to ALU source 1

• larger MUX to ALU source 2

CSE378 Winter 2001 5

Instruction Fetch

Actions:

IR <-- Memory[PC]

PC <-- PC + 4

Implementation registers:

• instruction register: information will be needed in subsequent
cycles

Hardware that is shared in different cycles

• memory (data memory later)

• ALU to increment the PC

CSE378 Winter 2001 6

Instruction Decode & Source Register(s) Read

Actions:

A <-- Register[IR[25:21]] (read rs)

B<-- Register[IR[20:16]] (read rt)

ALUOut <-- PC + sign-extend IR[15:0] << 2
(performed early in case this instructions is a branch)

Implementation registers:

• register A

• register B
both needed as operation source operands in the next cycle

• ALUOut for the target address

Hardware that is shared in different cycles

• ALU to calculate branch target

CSE378 Winter 2001 7

ALU Execution

Actions:

• if R-type instruction

ALUOut <-- A op B

• if data transfer instruction

ALUOut <-- A + sign-extend (IR[15:0])

• if branch instruction (& successful)

if (A == B) PC <-- ALUOut
(this is the value of ALUOut computed on the last cycle)

Implementation registers:

• ALUOut passes the target address from the last step

Hardware that is shared in different cycles

• ALU

CSE378 Winter 2001 8

Memory Access or Write an ALU Result

Actions:

• if load instruction

memory data register (MDR) <-- Memory[ALUOut]

• if store instruction

Memory[ALUOut] <-- B

• if R-type instruction

Register[IR[15:11]] <-- ALUOut

Implementation registers:

• MDR

• ALUOut

Hardware that is shared in different cycles

• ALU

• Memory

CSE378 Winter 2001 9

Load Completion

Actions:

Register[IR[20:16]] <-- Memory data register (MDR)

Implementation registers:

• MDR

CSE378 Winter 2001 10

Performance Example

Multiple-cycle implementation has better performance because each
instruction takes only as many cycles as it needs

Example:

• cycles per instruction

loads: 5, stores: 4, R-type: 4, branches: 3

• percentage in total instructions

loads: 22%, stores: 11%, R-type: 50%, branches: 17%

• both implementations have the same number of instructions

• CPIsingle = 5

• CPImulti = 5*.22 + 4*.11 + 4*.50 + 3*.17 = 4.05

• speedup = 5/4.05 = 1.2

CSE378 Winter 2001 11

Multiple-cycle Implementation: Control

Control is more complex than in a single-cycle implementation

• need to define control signals for each step

• need to know which step we’re on

Two implementations for the control unit

• hardwired control

• specified as a finite state machine (FSM)

• microprogramming

• expressed as a “micro” programming language

Both specifications can be synthesized into hardware

CSE378 Winter 2001 12

Instruction Fetch

Set the MUX so that the PC is the memory address:
IorD = 0

Set MemRead signal

Set IRWrite signal

Set the MUX for ALU source 1 to be from the PC:
ALUSrcA = 0

Set the MUX for ALU source 2 to be from the constant 4:
ALUSrcB = 01

Set ALUcontrol to “+”:
ALUOp = 00

Set the MUX for input to the PC to be from the ALU:
PCSource = 00

Set PCWrite

Why do we need a signal to write the IR?

The ALU result is also stored in ALUout: why does this not matter?

The PC can be incremented & the memory accessed for an
instruction during the same cycle: why can this be done?

CSE378 Winter 2001 13

Instruction Decode & Read Source Register(s)

Set the MUX for ALU source 1 to be from the PC:
ALUSrcA = 0

Set the MUX for ALU source 2 to be from the sign-extended, shifted
immediate:
ALUSrcB = 11

Set ALUcontrol to “+”:
ALUOp = 00

When are temporary registers A and B written?

What if this turns out not to be a branch instruction?

CSE378 Winter 2001 14

Execute

Which control signals are generated depends on the opcode

• data transfer

• Set the MUX for ALU source 1 to be from register A:
ALUSrcA = 1

• Set the MUX for ALU source 2 to be from the sign-extended
immediate:
ALUSrcB = 10

• Set ALUcontrol to “+”:
ALUOp = 00

• R-type

• Set the MUX for ALU source 1 to be from register A:
ALUSrcA = 1

• Set the MUX for ALU source 2 to be from register B:
ALUSrcB = 00

• Set ALUcontrol to the func field operation:
ALUOp = 10

CSE378 Winter 2001 15

Execute

• conditional branch

• Set the MUX for ALU source 1 to be from register A:
ALUSrcA = 1

• Set the MUX for ALU source 2 to be from register B:
ALUSrcB = 00

• Set ALUcontrol to “-”:
ALUOp = 01

• Set PCWriteCond signal which will update the PC if Zero is
asserted

• Set the MUX for input to the PC to be from ALUOut (holds
the target address that was computed in the last cycle):
PCSource = 01

(note that the PC is written twice for taken conditional
branches)

• jump

• Set the MUX for input to the PC to be from the jump
address:
PCSource = 10

• Set PCWrite

CSE378 Winter 2001 16

Data Memory Access & Register Write

Which control signals are generated depends on the opcode

• load

• Set MemRead
• Set the MUX so that the memory address comes from the

ALU:
IorD = 1

• store

• Set MemWrite
• Set the MUX so that the memory address comes from the

ALU:
IorD = 1

Where is the value that is to be written?

• R-type

• Set the MUX to choose the rd field as the write register:
RegDst = 1

• Set RegWrite
• Set the MUX to choose the ALU output as the data to write:

MemtoReg = 0

CSE378 Winter 2001 17

Register Write from a Load

Which control signals are generated depends on the opcode

• load

• Set the MUX to choose the rt field as the write register:
RegDst = 0

• Set RegWrite
• Set the MUX to choose the MDR as the data to write:

MemtoReg = 1

