
CSE378 Winter 2002 1

Evolution of ISAs

Instruction set architectures have changed over computer
generations with changes in the

• cost of the hardware

• density of the hardware

• design philosophy

• potential performance gains

One way to characterize ISAs:

• number of addresses/instruction

• regularity of instruction formats

• number of addressing modes

CSE378 Winter 2002 2

Number & Type of Operands/Instruction

One address & an implied accumulator register

• hardware was expensive & huge

• accumulator architecture : EDSAC (1949)

load AddressB # accum = Memory[AddressB]

add AddressC # accum = accum +
Memory[AddressC]

store AddressA # Memory[AddressA] = accum

One address & a few special purpose registers

• extended accumulator (special-purpose register) architecture:
Intel 8086

• registers for:

• data

• addresses
• segment pointers

• special, e.g., PC

CSE378 Winter 2002 3

Number & Type of Operands/Instruction

General-purpose registers

• register-memory architectures

• one operand is in memory: IBM 360 (1964)

add reg10, AddressA

• memory-memory architectures

• all operands can be in memory: VAX 780 (1977)

add AddressA, AddressB, AddressC

• load-store architectures

• CDC 6600 (1963), Cray 1

• current RISCs (1982 and on)

One address & no registers

• stack architectures : Burroughs 5000, Intel 8087

• use the top of the stack for other, implied operands

push AddressC # increment stack pointer
TOS = Memory[AddressB]

push AddressB # do it again

add # add top 2 locations; result on TOS]

pop AddressA # Memory[AddressA] = TOS
decrement stack pointer

CSE378 Winter 2002 4

Regularity of Instruction Formats

Started with 1 format

• for ease of programming (programming on the binary level!)

Then 3 or 4 formats, not necessarily the same length

• assembly language & compilers made programming easier

More formats

• small, low density, expensive memory

• CPU-to-memory bottleneck

• ISA’s:

• reflected high-level language operations
• had complicated addressing modes (next)
• had variable length instructions

• IBM 360: instructions can be 2,4 or 6 bytes
• Intel x86: 1 to 17 bytes
• DEC VAX: 1 to 54 bytes

• Examples:

• IBM 360: 5
• Intel x86: lots

• DEC VAX: also lots
• orthogonal design : all opcodes can be used with any

addressing mode & any information unit

CSE378 Winter 2002 5

Regularity of Instruction Formats

Back to fixed length instructions, few formats

• memory is large & cheap

• simple encoding facilitates faster hardware interpretation of
instructions

CSE378 Winter 2002 6

IBM 360 Formats

opcode R1 R2

RR format

R1 <- R1 op R2

opcode R1 X2

RX format

R1 <- R1 op mem[X2+B2+displ]

B2 displ

opcode R1 R3

RS format

mem[B2+displ] <- R1 op R3

B2 displ

opcode value

SI format

mem[B2+displ] <- mem[B2+displ] op value

B2 displ

opcode count

SS format

mem[addr2+R2+i] <- mem[addr1+R1+i], 0 <= i < count

R1 addr1 R2 addr2

CSE378 Winter 2002 7

Addressing Modes

Start with immediate, direct, indirect (also called deferred)

indirect: register contains the address of the operand

Then index registers

special registers for an array index

Then index + base
allow the sum of 2 registers to be an address

Even more....

CSE378 Winter 2002 8

VAX Addressing Modes

Immediate

different addressing modes for constants of different sizes

different addressing modes for data and address constants

Register : reg

the register contains the operand

Register deferred : (reg)

the register contains the address of the operand

Autoincrement : (reg)+

the register contains the address of the operand & is
incremented by the size of the operand after it’s accessed

Autodecrement : -(reg)

the address in the register is decremented before the access

Autoincrement deferred : @(reg)+

address in the register is a pointer to the address of the operand
& is incremented by the size of the operand

PC-relative :

both regular & deferred

CSE378 Winter 2002 9

VAX Addressing Modes

Displacement : displ(reg)

separate addressing modes for each displacement length (one
for each information unit) which is stored only in the number of
bits needed & then sign extended

both regular & deferred

Indexed :

used in conjunction with other addressing modes

the contents of the index register is multiplied by the size of the
operand in bytes & added to the contents of the other register

• register deferred indexed : (reg)[IndexReg]

• autoincrement indexed : (reg)+[IndexReg]

• autodecrement indexed : -(reg)[IndexReg]

• autoincrement deferred indexed : @(reg)+[IndexReg]

• displacement indexed : displ(reg)[IndexReg]

• displacement deferred indexed :
{@displ(reg)}[IndexReg]

add the displacement & the contents of reg to form a pointer
to the base address (the address where the base address
is stored); the base address is fetched & added to the
adjusted index in IndexReg to form the operand address;
the operand is then fetched

CSE378 Winter 2002 10

Intel x86

85% of the microprocessors in the world (not counting embedded
processors)

Only 8 GPRs (other registers are special purpose)

Register-memory architecture

• 2 operand instructions; 1 is both source & destination

• Addressing relies on segments (code, stack & static data)

String instructions in addition to computation, data transfer, control

Condition codes instead of condition registers

No regularity in the ISA

• ISA for 8 bits & an extended ones for 16, 32 & 64 bits

• Lots of addressing modes (but fewer than the VAX)

• some can’t use certain registers

• Variable length instructions, variable length opcodes (later)

• addresses in bytes, not instructions

• Encoding is complicated (see Figure 3.35)

CSE378 Winter 2002 11

RISC Vs. CISC

RISC

general philosophy :

simple instructions execute faster than complex instructions

• less to do
• fewer choices; therefore it takes less time to decide

what is being executed now (smaller circuitry)
• simplicity leads to regularity in the hardware design

easier to get the hardware right & to debug it

use simple instructions as building blocks for more complex
operations

short cycle time & single-cycle instructions; therefore more
instructions executed per time unit

• few instructions, simple instructions

• few, simple addressing modes

• fixed-length instructions (32 bits)

• few instruction formats: (almost) fixed fields within an instruction

• load/store architecture

• hardwired control (later)

• conducive to pipelining because each instruction takes about
the same amount of time to execute (later)

• expose the implementation to the compiler/programmer

CSE378 Winter 2002 12

RISC Vs. CISC

CISC

general philosophy :

get faster execution by having a better match between the
high-level operations & the hardware operations

direct execution of one instruction in hardware is faster than
many instructions in software

tight encoding & fewer instructions
⇒ fewer bytes brought in from memory

developed when:

• memory was expensive
• caching was not so widespread

• large number of instructions

examples:

• sobgtr for loop indexing
• search for a substring
• evaluate a polynomial

• many addressing modes

• variable-length instructions

opcode info unit # operands

CSE378 Winter 2002 13

RISC Vs. CISC

CISC, cont’d.

• lots of instruction formats; use the same fields for different
purposes

• memory-to-memory architecture

• microprogrammed control (later)

• difficult to pipeline because instructions take vastly different
amount of time to execute (later)

• implementation hidden from the compiler/programmer;
separation of architecture & implementation

small
constant

addressing
mode register

the
value

.

first byte of an operand

CSE378 Winter 2002 14

RISC Vs. CISC

Why the change to RISC?

• performance studies showed that:

• few instructions were used most of the time
(VAX study: 15/90%. 26/95%)

• very complex instructions were never generated

• increase in technology density

• instruction caches for loops

• advances in compiler technology that enabled code to be
scheduled to hide operation latencies in a pipeline (later)

Bottom line :

• fast instruction execution, pipelining, compiler support for
pipelining, onchip caches, more general-purpose registers

more important than

• encoded instructions & functionality in hardware

• result: lots of fast instructions executed more quickly than
slower, fewer instructions

CSE378 Winter 2002 15

RISC VS. CISC

A comparison is difficult today

• Pentium Pro hardware translates instructions into uops (very
RISC-like micro operations) & pipelines uop execution

• improvements in implementation that are somewhat
architecture-independent

• superscalar execution (wide issue width)

• speculative execution
• out-of-order execution & register renaming

• branch prediction with 96% accuracy
• huge on-chip caches

• multithreading

• majority of microprocessor market ⇒ $$$ ⇒ more engineers on
microprocessor design teams & better fabrication lines

CSE378 Winter 2002 16

MIPS is Not the Only RISC

RISC architectures began (again) in the 1980’s in reaction to more
complex CISCs

• Cray & CDC 6600 were early load-store architectures

• research at IBM on the IBM 801 (the first RISC processor)
became the RT/PC ⇒ RS6000 ⇒ PowerPC

• research at Stanford on the MIPS
led to MIPS Rxxx

• research at Berkeley on the RISC I & II
led to Sun SPARC processors

• HP Precision

• DEC/Compaq Alphas (the fastest cycle time today)

