
CSE378 Winter 2002 1

MIPS

MIPS is a “computer family”

• R2000/R3000 (32-bit)

• R4000/4400 (64-bit)

• R8000 (for scientific & graphics applications)

• R10000 & R12000 (64-bit & out-of-order execution)

MIPS originated as a Stanford research project
Microprocessor without Interlocked Pipe Stages

MIPS was bought by Silicon Graphics (SGI) & is now independent

• focuses on embedded processors for game machines (e.g.
Nintendo)

MIPS is a RISC

CSE378 Winter 2002 2

MIPS Registers

Part of the state of a process

Thirty-two 32-bit general purpose registers (GPRs): $0, $1, ..., $31

• integer arithmetic

• address calculations

• temporary values

By convention software uses different registers for different purposes
(next slide)

A 32-bit program counter (PC)

Two 32-bit registers HI and LO used specifically for multiply and
divide

• HI & LO concatenated for the product

• LO for the quotient; HI for the remainder

Thirty-two 32-bit registers used for floating-point arithmetic: $f0, $f1,
..., $f31

• often used as 16 64-bit registers for double precision FP

Other special-purpose registers (later)

CSE378 Winter 2002 3

MIPS Register Names and gcc Conventions

Register Name Use Comment

$0 zero always 0 cannot be written

$1 $at reserved for
assembler

don’t use it!

$2, $3 $v0, $v1 function return

$4 - $7 $a0 - $a3 pass first 4 procedure/
function arguments

$8 - $15 $t0 - $t7 temporaries caller saved (callee uses
them without saving them)

$16 - $23 $s0 - $s7 temporaries callee saved (caller
assumes they will be avail-
able on function return)

$24, $25 $t8, $t9 temporaries caller saved

$26, $27 $k0, $k1 reserved for the OS don’t use them!

$28 $gp pointer to global
static memory

points to the middle of a
64KB block in the static
data segment(next slide)

$29 $sp stack pointer points to the last allocated
stack location(next slide)

$30 $fp frame pointer points to the activation
record(later)

$31 $ra procedure/function
return address

CSE378 Winter 2002 4

Memory Usage

A software convention

text segment : the code

data segment

• static data : objects whose size is known to the compiler &
whose lifetime is the whole program execution

• dynamic data : objects allocated as the program executes
(malloc, new)

stack segment : FIFO process-local storage

stack
segment

text
segment

data
segment

7fffffff hex

400000hex

10000000hex

Dynamic data
Static data

Reserved0hex

Code

CSE378 Winter 2002 5

MIPS Load-Store Architecture

Most instructions compute on operands stored in registers

• load data into a register from memory

• compute in registers

• the result is stored into memory

For example:

a = b + c

d = a + b

is “compiled” into:

load b into register $x

load c into register $y

$z ⇐ $x + $y

store $z into a

$z ⇐ $z + $x

store $z into d

CSE378 Winter 2002 6

MIPS Information Units

Data types and sizes

• byte

• half-word (2 bytes)

• word (4 bytes)

• float (4 bytes using single-precision floating-point format)

• double (8 bytes using double-precision floating-point format)

Memory is byte-addressable

A data type must start on an address evenly divisible by its size in
bytes

CSE378 Winter 2002 7

Big & Little Endian Byte Order

Every word starts at an address that is divisible by 4.
Which byte in the word is byte 0?
How is the data in. byte a,b,c,d stored?

Most significant byte is the lowest byte address.
Word is addressed by the byte address of themost significant byte.

Least significant byte is the lowest byte address.
Word is addressed by the byte address of theleast significant byte.

a b c d 0

e f g h 4

i j k l 8

0’s 0’s 0’s 1102 12

d c b a 0

h g f e 4

l k j i 8

0’s 0’s 0’s 1102 12

0781516232431

byte
address

0781516232431

Big
Endian

Little
Endian

CSE378 Winter 2002 8

Big & Little Endian Byte Order

Problems when transferring data structures that contain a mix-
ture of integers & characters between big & little endian comput-
ers

Transfer from big endian computer to little endian computer

0 J I M M I J 0

4 S M I T T I M S 4

8 H 0 0 0 0 0 0 H 8

12 0’s 0’s 0’s 21 0’s 0’s 0’s 21 12

M I J 0

T I M S 4

0 0 0 H 8

21 0’s 0’s 0’s 12

byte
address

Big
Endian

Little
Endian

byte
address

Little
Endian

byte
address

CSE378 Winter 2002 9

MIPS Information Units

MIPS supports both big- and little-endian byte orders

SPIM uses the byte order of the machine its running on

• Intel: little-endian

• Alpha, SPARC, Mac: big-endian

Words in SPIM are listed from left to right, but byte addresses are
little-endian within a word

[0x7fffebd0] 0x00400018 0x00000001 0x00010aff0x00000005

byte 0x7fffebd2

word 0x7fffebd4

half-word 0x7fffebde

