
1

4/22/2002 51

Assemblers & Linkers

4/22/2002 52

Real Programs

�Real programs are broken up into modules (various .c files, for
instance).

�Each file might declare global variables.
�Each file might use globals that are (possibly) defined by

another file.
�Each file might call functions that are defined in some other file.
�How do the tools we've seen manage these details?

4/22/2002 53

Assembly File Format

�A real assembly file looks like this:
.data

global data definitions go here.

.text

instructions go here

�Example:
.data

someArray: .space 400 # an array 400 bytes long

x: .word 13 # a word-sized variable

.text

lw $t0, x($gp)

addi $t1, $gp, someArray

lw $t2, 0($t1)

� someArray and x are labels

4/22/2002 54

Labels

�Assemblers let us use labels to talk about offsets or addresses
in our programs.

�Labels are resolved into actual values by the linker.
�So what does the assembler actually do?

� Encodes instructions as best it can.
� Spits out an object file.

4/22/2002 55

Assemblers

�Assemblers let us express global (static) data and instructions.
�They let us talk about locations in terms of labels, rather than

numeric values.
�Many assemblers (not the one we'll use in this class) include

other bells and whistles you'd want for building large-scale
systems:
� Pseudo-operations (eg. for multiplication)
� Other addressing modes
� Flexible syntax

4/22/2002 56

Object File Format

�An object file contains (at least) the following:
� A text segment (some instructions)
� A data segment (global data defined by this file)
� A symbol table: a list of symbols defined and referenced by this file

2

4/22/2002 57

Linker

�The linker takes a bunch of object files and resolves inter-file
and intra-file symbol references.

�It spits out an executable file, which contains (at least):
� A text segment
� A data segment
� Debugging information (possibly)

�After resolving symbol references in the modules, the Linker
streams together the text segments of all of the object files
followed by the data segments.

4/22/2002 58

Loader

�How do we run an executable?
�The loader is a component of the operating system that knows

how to read executable files:
� It reads the executable from disk.
� Places the text segment into memory.
� Places the data segment into memory.
� Sets up the stack pointer, frame pointer, and global pointer.
� Kicks off the program by jumping to the first instruction.

4/22/2002 59

Back to Our Example:

�Remember our simple C program:
int x, y;

void main() {

x = x + y;

if (x == y) {

x = x + 3;

}

x = 42 + x * y;

...

}

4/22/2002 60

Real Assembly Version
.data

x: .word 0

y: .word 0

.text

lw $t1, x($gp) # t1 holds x

lw $t2, y($gp) # t2 holds y

add $t1, $t1, $t2 # x = x + y

bne $t1, $t2, L1 # branch if t1 != t2

addi $t1, $t1, 3 # x = x + 3

L1: mult $t1, $t2 # lo = x * y

mflo $t3 # get the result

add $t1, $t3, 42

sw $t1, x($gp) # update x

� Notice: we use labels for our globals and for the branch instruction.
Why is this a good idea?

� Link the program for me (resolve the labels to values).

4/22/2002 61

A More Complicated Example

�A looping C program:
int array[100];

void main() {

int i;

i = 0;

while (i < 100) {

array[i] = i;

i = i + 1;

}

}

4/22/2002 62

Assembly Version
.data

array: .space 400

.text

main: add $t0, $0, $0 # use t0 as a counter (i)

addi $t1, $gp, array # t1 holds an address

addi $t2, $0, 100 # t2 holds constant 100

start: slt $t3, $t0, $t2

beq $t3, $0, done

sw $t0, 0($t1) # a[i] = i

addi $t0, $t0, 1 # i = i + 1

addi $t1, $t1, 4 # why are we adding 4?

j start

done: jr $ra # return to caller

� Notice the use of labels (for data and for branch offsets)
� Link the program for me (resolve the labels).

3

4/22/2002 63

Assembly Version (Compiler Generated)
.data

array: .space 400

.text

main: addi $sp, $sp, -24

sw $31, 16($sp)

addi $2, $0, 99

addi $3,$gp, array

addi $4, $3, 396

L5: sw $2, 0($3)

addi $2, $2, -1

addi $3, $3, -4

bgez $2, L5

lw $ra, 16($sp)

addi $sp, $sp, 24

jr $ra

� The compiler is pretty smart...

