
1

4/8/2002 1

CSE378

Machine Architecture

4/8/2002 2

Machines

�In this section:
� Design Perspectives
� Special purpose machines
� General purpose machines

4/8/2002 3

Levels in Machine Design

�We can talk about design at a variety of levels (low to high):
� Circuit design: transistors, resistors, etc. Building gates and flip flops.
� Logic design: put gates (AND, OR, XOR, etc) and flip-flops together to

build blocks such as registers, adders, memory, etc.
� Register transfer level: describe the execution of instructions by

showing how information is transferred/manipulated between adders,
registers, etc.

� Processor description: ISA
� System description: includes memory hierarchy, I/O devices etc.

4/8/2002 4

Register Transfer Perspective

�We'll use block diagrams or pseudocode to describe our
machines in this course.

�We'll start with special purpose machines, then move on to
general purpose machines.

�Key component types:
� Combinational: the output is a function of the inputs (eg. adder)
� Sequential: the state is remembered

4/8/2002 5

Combination Element: Adder

�An adder computes the sum (output) of two inputs:

4/8/2002 6

Combinational Element: ALU

�ALU computes (combinational) output from two inputs.

2

4/8/2002 7

Synchronous Design

�Our machines will use a periodic clock that controls when signals
can be read and when they can be written. Values in storage
elements can only be updated on clock edges (clock down in
SMOK).

4/8/2002 8

A Storage Element: Register

�The basic building block is a register.
�Our registers are 32 bits wide.
�A register will only be written on a clock edge AND when the

write control line is asserted.
�It can be read and written on the same clock, but the value read

will be the old value.

4/8/2002 9

A Counter Machine

�Implement this machine:
int i = 0;

while (true) {

i = i + 1;

}

�How do we get the thing to stop?

4/8/2002 10

A Power Machine

�This machine computes X^N
int result = 1;

int x = 2;

int n = 10;

while (n != 0) {

result = result * x;

n = n - 1;

}

� What components do we need to build this machine?

4/8/2002 11

Adding Arrays of Numbers

�To hold a variable amount of data, we need more than a
register.

�We use a memory, which can store large amounts of data
cheaply, but slowly.

4/8/2002 12

ArraySum Machine

�Here's a description:
int i = 0;

int sum = 0;

while (true) {

sum = sum + memory[i];

i = i + 1;

}

3

4/8/2002 13

Programs = Data

�We've seen machines that process data from a memory.
�What if the data that a machine processes determines how the

machine behaves? We call that kind of data instructions.
�A machine that interprets instructions is general purpose: it can

simulate other kinds of machines!
�What kinds of machines? It depends on the instruction stream...

