
1

4/24/2002 88

Supporting Procedure Call

4/24/2002 89

Introduction

�Procedures/functions are a crucial program structuring
mechanism.

�To support them, we need a calling convention. Why?
� Different compilers define their own calling conventions, but

usually they are pretty similar.
�In RISC machines, the hardware performs only simple

instructions, so the programmer/compiler has to implement the
bulk of a convention...

4/24/2002 90

The Program Stack

�Each process has its own stack.
�The stack is a dynamic data structure, accessed in LIFO manner.
�Memory for the stack is allocated during the load process.
�The register $sp (29) in MIPS is loaded to point to the first empty

spot on the stack.
�By convention, the stack grows towards lower memory

addresses
� To free stack space, we add to $sp
� To allocate stack space, we increment $sp

4/24/2002 91

MIPS Program/Memory Layout

�By MIPS convention, memory is laid out as follows:

0x7FFFFFFF

0x00000000

0x00400000

stack

dynamic data (heap)

static data (globals)

program text
(instructions)

reserved

$sp

$gp

4/24/2002 92

A Stack Frame

�A stack frame is a block of memory on the stack that is used for:
� Passing arguments
� Saving registers
� Local variables

one frame
local variables

saved registers

arguments to other functions

$sp

caller's stack frame

$fp

function arguments

4/24/2002 93

Procedure Call Sequence
� Terms: callee (the procedure that is called); caller (the procedure doing

the calling)
� Here's a generic sequence of events surrounding a call:

� Caller must pass the return address to the callee
� Caller must pass parameters to the callee
� Caller must save any registers that the callee might want to use
� Jump to the 1st instruction of the callee
� Callee must allocate space for local variables, possibly save registers
� Callee executes...
� Callee has to restore registers (possibly) and return to caller
� Caller continues...

2

4/24/2002 94

Mechanisms
� How do we save information? Pass information? Make space for locals?

The MIPS convention uses registers to:
� Pass the return address in $ra
� Pass a small number of arguments in $a0-$a4
� Keep track of the stack pointer $sp
� Return values from functions (in $v0 and $v1)

� The stack is used for:
� Saving registers the callee might use
� Save information about the caller ($ra, why?)
� Pass additional parameters
� Allocate space for locals

4/24/2002 95

Register Conventions

�This table should make more sense now:
Number Name Use Comments

$2-$3 $v0-$v1 Function return value

$4-$7 $a0-$a3 Function call parameters

$8-$15 $t0-$t7 Volatile temporaries caller saved

$16-$23 $s0-$s7 Saved temporaries callee saved

$24-$25 $t8-$t9 Volatile temporaries

$28 $gp Global pointer

$29 $sp Stack pointer

$30 $fp Frame pointer

$31 $ra Return address

4/24/2002 96

Who Saves/Restores Registers?

�When one procedure calls another, what happens to the data in
the registers it was using? Either we don't care, or we do, in
which case someone has to save the values...

�Two main approaches:
� Caller saves: The caller saves any registers that it wants preserved

before making a call and restores them afterwards
� Callee saves: The callee saves any registers that it wants to use, and

restores them before it returns

4/24/2002 97

MIPS approach

�MIPS takes a hybrid approach. It classifies some registers as
caller-saved and some as callee-saved

�The caller must save registers $t0-$t9 before making a call and
restore them afterwards. These are called volatiles, sometimes.

�The callee must save registers $s0-$s7 and $ra before using
them and clean them up afterwards

�Why such a crazy approach?
� Compilers are good at choosing between long-lived and short-lived

values and putting them in the right registers... Which go where?

4/24/2002 98

A Convention of Our Invention

� The trouble with conventions: No one agrees on them.
� The text presents two different ones.
� The MIPS manual suggests another
� gcc uses another

� So we'll make up our own: it's very simple.
� Think about these 4 points of execution:

� Entry to a procedure
� Before calling another procedure
� After calling another procedure
� Exit from the procedure

4/24/2002 99

Procedure Entry

�Allocate stackspace:
addi $sp, $sp, -[framesize]

�framesize is calculated by determining the number of bytes for:
� Local variables
� Saved registers (only $ra and $fp in our scheme)

�Save registers:
sw $ra, 0($sp)

sw $fp, 4($sp)

�Set up frame pointer:
add $fp, $sp, $0

3

4/24/2002 100

Procedure Exit

�Undo the entry code
� restore registers
� shrink the stack

lw $ra, 0($fp)

lw $fp, 4($fp)

addi $sp, $sp, [framesize]

�Return to the caller
jr $ra

4/24/2002 101

Prior to a Call
� Save in-use registers. Grow the stack the right amount, store the

registers to the stack.
� Pass arguments on the stack. This means growing the stack by 4 * the

number of arguments:
addi $sp, $sp, -[argsize]

� Put the arguments on the stack:
sw ..., 0($sp) # first argument

sw ..., 4($sp) # second argument

sw ..., 8($sp) # etc.

� Jump to the function by executing jal
jal someFunctionLabel

� (This will put the return address into $ra.)

4/24/2002 102

After a Call

�First shrink the stack to pop off the arguments.
�Then restore registers we had saved before the call.
�Then restore the stack pointer to its original place.

�The framepointer. Why?
� In our scheme, the stack pointer grows and shrinks throughout a

function body. But the framepointer always points to a fixed place.
� This is important so we can easily calculate offsets to locals,

arguments, and so on...

4/24/2002 103

Example: Recursive Factorial
int factorial(int n) {

if (n==0) {

return 1;

}

else {

return n * factorial(n-1);

}

}

