Performance

Introduction

s/3/2002 "

* Many factors impact performance:

*Technology:

* hasic circuit speed (clock speed, usually in MHz, now in GHz - billions of
cycles per second)

* process technology (# of transistors per chip)
* Organization:

* what style of ISA (RISC vs. CISC)

* what type of memory hierarchy

*Software: quality of compiler, 0S, database, etc

5/3/2002 105

Metrics

*Raw speed (peak performance -- never attained)
* Execution time (ulso called response time, ie. fime required to
execute program from beginning to end). Benchmarks:
* Integer dominated programs (compilers, etc)
* Scientific (lots of floating point)
* Graphics/multimedia
* Throughput(total amount of work in given time)
* Good metric for systems managers
* Databases: keep the most people happy

Execution Time

5/3/2002 106

Performance:

Performance, = 1/ExecutionTime,

Processor A is faster than Processor B if:
Performance, > Performance,

ExecutionTime, < ExecutionTime,

Relative Performance:

Performance,, / Performance; = ExecutionTimey / ExecutionTime,

5/3/2002 w

Measuring Execution Time

*Wall clock, response time, elapsed time
* Unix time function:

[fijil:~ time someprogram
346.085u 0.39s 5:48.32 99.4% 5+202k 0+0io Opf+Ow

. lists user CPU time, system CPU time, elapsed time, percentage of
elapsed time which is CPU time and other info

We'll typically use User (PU timeto mean (Pl execution time, o
just execution time

Defining Execution Time

5/3/2002 108

*Execution time = clock cycles x clock cycle time
*Execution time is program dependent
*(lock cycles are program dependent

*clock cycle time (usually in ns) is dependent on the machine
Since clock cycle time = 1/(clock cycle rate), and alternate definition is:
CPU Execution time = CPU clock cycles

clock cycle rate

5/3/2002 109




CPI Cycles per Instruction

* Definition: (Pl is the average # of cycles per instruction:

* (PU clock cycles = Number of instructions executed x CPI

CPU Execution Time = Number of Instructions x CPI x clock cycle time

* (Plin isolation is not a measure of performance (program and compiler
dependent)

* Ideally CPI =1, but this might slow the clock (compromise)
* Can we have (PI <1

Instruction Classes

s/3/2002 o

*We can have different CPIs for different classes of instructions
(eg. floating point instructions take more cycles than integer
instructions.)

C(PU Execution time = X (CPI, x C) x clock cycle time

* C; is the number of instructions in a class that have executed

* Note that minimizing the number of instructions doesn't necessarily
improve performance.

* Improving part of the architecture can improve a (..

5/3/2002 m

Measuring CPI

*Instruction count: need a simulator or profiler:
* simulator interprets and counts each instruction
* profiler uses a sampling technique
* (PU execution time can be measured
*Clock cycle time is given by processor
*We know Exetime, so we can solve for total cycles

*Knowing total cycles together with the number of instructions
executed lets us solve for average CPI

Other Metrics: MIPS

5/3/2002 m

*MIPS = Millions of Instructions Per Second

MIPS = Instruction count / (Execution Time x 1,000,000)
* MIPS is appealing because it is a rate -- bigger is better
*But MIPS in isolation is no better than CPI -- it's program
dependent
*Does not take the instruction set into account:

* CISC programs typically take fewer instructions than a RISC, so we
can't compare the different ISAs using MIPS

5/3/2002 m

The Trouble with MIPS

*It gives "wrong" results:

* Machine A with compiler (1 executes program P in 10 seconds, using
100,000,000 instructions (10 MIPS)

* Machine A with compiler (2 executes program P in 15 seconds, using
180,000,000 instructions (12 MIPS)

*(1is clearly better, but it has a lower MIPS rating.
*MIPS doesn't take CPl info account...

Benchmarks

5/3/2002 1

*Benchmark: workload representative of what the computer will
be used for.

* (PU benchmarks: SPEC (SPECint, SPECfp, etc)
*Database benchmarks

*Webserver benchmarks

*(aveats:

* Compilers optimize specifically for benchmarks

* Some benchmarks don't test the memory system sufficiently

5/3/2002 s




Amdahl's Law

* Amount we can improve performance is limited by the amount
that the improved feature is actually used:

Example Measurements

New Execution Time = Execution Time affected by Improvement 4 Unaffected Exe fime
Amount of improvement

Example: if loads/stores take up 33% of our Exe time, how much do we
need to improve loads/stores to make the program run 1.5 times
faster?

Corollary: Make the common case fast!

s/3/2002 6

Category 6CC SPICE Ave CPI
Load/Store 3% 40% 14
Branches 16% 8% 1.8
Jumps 2% 2% 12

FP Add - 5% 20

FP Sub - 3% 40

FP Mul - 6% 50

FP Div - 3% 19.0
Other (integer ADD, efc) 49% 33% 1.0

*What is the average CPI for gec? For spice?

5/3/2002

n




