
1

5/3/2002 104

Performance

5/3/2002 105

Introduction

�Many factors impact performance:
�Technology:

� basic circuit speed (clock speed, usually in MHz, now in GHz - billions of 
cycles per second)

� process technology (# of transistors per chip)

�Organization:
� what style of ISA (RISC vs. CISC)
� what type of memory hierarchy

�Software: quality of compiler, OS, database, etc

5/3/2002 106

Metrics

�Raw speed (peak performance -- never attained)
�Execution time (also called response time, ie. time required to 

execute program from beginning to end). Benchmarks:
� Integer dominated programs (compilers, etc)
� Scientific (lots of floating point)
� Graphics/multimedia

�Throughput (total amount of work in given time)
� Good metric for systems managers
� Databases: keep the most people happy

5/3/2002 107

Execution Time

Performance:
PerformanceA = 1/ExecutionTimeA

Processor A is faster than Processor B if:
PerformanceA > PerformanceB

ExecutionTimeA < ExecutionTimeB

Relative Performance:
PerformanceA / PerformanceB = ExecutionTimeB / ExecutionTimeA

5/3/2002 108

Measuring Execution Time

�Wall clock, response time, elapsed time
�Unix time function:

[fiji]:~ time someprogram

346.085u 0.39s 5:48.32 99.4% 5+202k 0+0io 0pf+0w

...lists user CPU time, system CPU time, elapsed time, percentage of 
elapsed time which is CPU time and other info

We'll typically use User CPU time to mean CPU execution time, or 
just execution time

5/3/2002 109

Defining Execution Time

�Execution time = clock cycles x clock cycle time
�Execution time is program dependent
�Clock cycles are program dependent
�clock cycle time (usually in ns) is dependent on the machine

Since clock cycle time = 1/(clock cycle rate), and alternate definition is:

CPU Execution time = CPU clock cycles

----------------

clock cycle rate



2

5/3/2002 110

CPI Cycles per Instruction

�Definition: CPI is the average # of cycles per instruction:
� CPU clock cycles = Number of instructions executed x CPI

� CPI in isolation is not a measure of performance (program and compiler 
dependent)

� Ideally CPI = 1, but this might slow the clock (compromise)
� Can we have CPI < 1

CPU Execution Time = Number of Instructions x CPI x clock cycle time

5/3/2002 111

Instruction Classes

�We can have different CPIs for different classes of instructions
(eg. floating point instructions take more cycles than integer 
instructions.)

CPU Execution time = Σ (CPIi x Ci) x clock cycle time

� Ci is the number of instructions in a class that have executed
� Note that minimizing the number of instructions doesn't necessarily 

improve performance.
� Improving part of the architecture can improve a Ci. 

5/3/2002 112

Measuring CPI

�Instruction count:  need a simulator or profiler:
� simulator interprets and counts each instruction
� profiler uses a sampling technique

�CPU execution time can be measured
�Clock cycle time is given by processor

�We know Exetime, so we can solve for total cycles
�Knowing total cycles together with the number of instructions 

executed lets us solve for average CPI

5/3/2002 113

Other Metrics: MIPS

�MIPS = Millions of Instructions Per Second

MIPS = Instruction count / (Execution Time x 1,000,000)

�MIPS is appealing because it is a rate -- bigger is better
�But MIPS in isolation is no better than CPI -- it's program 

dependent
�Does not take the instruction set into account:

� CISC programs typically take fewer instructions than a RISC, so we 
can't compare the different ISAs using MIPS

5/3/2002 114

The Trouble with MIPS

�It gives "wrong" results:
� Machine A with compiler C1 executes program P in 10 seconds, using 

100,000,000 instructions (10 MIPS)
� Machine A with compiler C2 executes program P in 15 seconds, using 

180,000,000 instructions (12 MIPS)

�C1 is clearly better, but it has a lower MIPS rating.
�MIPS doesn't take CPI into account...

5/3/2002 115

Benchmarks

�Benchmark: workload representative of what the computer will 
be used for.

�CPU benchmarks: SPEC (SPECint, SPECfp, etc) 
�Database benchmarks
�Webserver benchmarks

�Caveats:
� Compilers optimize specifically for benchmarks
� Some benchmarks don't test the memory system sufficiently



3

5/3/2002 116

Amdahl's Law

�Amount we can improve performance is limited by the amount 
that the improved feature is actually used:

Example: if loads/stores take up 33% of our Exe time, how much do we 
need to improve loads/stores to make the program run 1.5 times 
faster?

Corollary: Make the common case fast!

New Execution Time = Execution Time affected by Improvement
Amount of improvement

+ Unaffected Exe time

5/3/2002 117

Example Measurements

�What is the average CPI for gcc? For spice?

1.033%49%Other (integer ADD, etc)

19.03%-FP Div

5.06%-FP Mul

4.03%-FP Sub

2.05%-FP Add

1.22%2%Jumps

1.88%16%Branches

1.440%33%Load/Store

Ave CPISPICEGCCCategory


