
1

5/10/2002 135

Multi-cycle Implementation

5/10/2002 136

Issues With the Single Cycle Implementation

�All instructions take the same time (CPI = 1), but some are
actually shorter than others...
� ADD uses Instruction Memory, Register File, ALU, Register File
� LW uses Instruction Memory, Register File, ALU, Data Memory, Register

file again...

�The cycle time of the machine has to be the cycle time of the
"longest" instruction

�We are violating an important principle: Make the common case
fast.

5/10/2002 137

Thought Experiment

�Suppose we could design a machine whose cycle time varied, so
it was just long enough for each kind of instruction.

�Suppose the following times are realistic (in nanoseconds):
� Memory access: 2
� Register Read/Write: 1
� ALU: 2

�Fill in the table on the next page

5/10/2002 138

Thought Experiment 2

Branch

R-type

Store

Load

TotalReg WriteDMEMALUReg ReadIMEMInstruction type

5/10/2002 139

Thought Experiment 3

�A given benchmark (say GCC) has this mix: 20% loads, 10%
stores, 50% R-format, 20% branches
� What's the single-cycle time?
� What's the vari-cycle time?
� What's the speedup?

�Suppose we add floating point instructions, and it takes 8ns to
do an FP add and 16 ns to do a FP mult.
� New cycle time of single cycle machine?
� Another mix: 25% loads, 15% stores, 30% R-format, 10% branches,

10% FP add, 10% FP mult

5/10/2002 140

Making it Better

�Of course, it's impractical to build a vari-cycle machine.
�What to do?

� Multiple cycle implementation (section 5.4): Approximate the effect of
a variable clock, by letting instructions take different numbers of
cycles to complete.

� Pipelining: Observation: We're underutilizing functional units (eg. the
ALU is idle while we're accessing memory). Find a way to work on
multiple instructions at the same time.

�CISCS pretty much require a multi-cycle implementation. Why?
�RISCS are amenable to pipelining...

