
1

4/12/2002 26

Introduction to the MIPS ISA

4/12/2002 27

Overview

�The MIPS ISA specifies a collection of very simple instructions
(not unlike the SimpleISA instructions -- there are just more of
them.)

�Terms:
� High-level language: eg. C, C++, Java
� Assembly language: textual representation of machine language
� Machine language: just the ones and zeros understood by the machine

4/12/2002 28

Overview: Tools

�A compiler's job is to take a source file in a high-level language
and turn it into assembly code:

cc foo.c --> foo.s

�An assembler's job is to take an assembly file and turn it into
machine code (object file)

asm foo.s --> foo.o

�A Linker's job is to take a bunch of object files and "merge"
them into a single executable:

linker foo.o libc.o etc.o --> a.out

4/12/2002 29

A Running Example

�Here is a simple C program:
int array[100];

void main() {

int i;

while (i < 100) {

array[i] = i;

i = i + 1;

}

}

� What instructions should the ISA include to execute it?
� Tensions: compiler quality, memory size, ease of programming,

hardware design complexity

4/12/2002 30

The MIPS Family

�MIPS originated from a project at Stanford Univ:
Microprocessor without Interlocked Pipe Stages

�H+P posit 4 principles of design. Keep them in mind:
� Simplicity favors regularity
� Smaller is faster
� Compromise
� Make the common case fast

4/12/2002 31

MIPS is a RISC

� RISC = Reduced (Regular/Restricted) Instruction Set Computer
� For instance, (almost) all arithmetic operations are of the form:

Rdest = R1 op R2

� Another restriction: MIPS is a load/store architecture (like SimpleISA).
� Another restriction: all instructions are 32-bits long
� Basic families of operations:

� Arithmetic (add, subtract, etc)
� Logical (or, and)
� Control (branches and jumps)
� Memory access (load and store)

2

4/12/2002 32

Load-Store Architecture

�Every operand must be in a register (with a few exceptions)
�Variables must be loaded into registers
�Results must be loaded back
�Example C code...

a = b + c;

d = a + b;

...would be translated into something like:
load b into register Rx

load c into register Ry

Rz <- Rx + Ry

store Rz into a

... etc

4/12/2002 33

MIPS Registers

�Provides 32, 32-bit registers, for:
� integer arithmetic
� address calculations
� special functions (later)
� temporary values

�A 32-bit program counter (PC)
�Two 32-bit registers (HI and LO) used for multiplication &

division
�Floating point registers (later)

4/12/2002 34

Register Names and Conventions

Register #Register #Register #Register # NameNameNameName FunctionFunctionFunctionFunction CommentsCommentsCommentsComments

--

$0 $0 Always 0 Can't write it!

$1 $at Reserved for assembler don't use it!

$2-$3 $v0-$v1 Function return value

$4-$7 $a0-$a3 Function call parameters

$8-$15 $t0-$t7 Volatile temporaries Not saved on call

$16-$23 $s0-$s7 Saved temporaries Saved on call

$24-$25 $t8-$t9 Volatile temporaries

$26-$27 $k0-$k1 Reserved for kernel/OS Don't use them!

$28 $gp Global pointer

$29 $sp Stack pointer

$30 $fp Frame pointer

$31 $ra Return address

4/12/2002 35

MIPS Information Units

�Data types and size:
� Byte (8 bits)
� Half-word (2 bytes)
� Word (4 bytes)
� Float (4 bytes)
� Double (8 bytes)

�Memory is byte addressable
�A data type must start on an address divisible by its size.

4/12/2002 36

MIPS Instruction Types

�Remember these instruction classes:
� Memory access (load/store)
� Arithmetic/Logical (add, and, or, sub, etc)
� Comparison (less-than)
� Control (branches and jumps)

�We'll use this notation when describing instructions:
rd: destination register (modified by instruction)

rs: source registers (read by instruction)

rt: source/destination register (read or read & modified)

immed: 16 bit immediate value encoded in instruction

4/12/2002 37

Running Example

�Let's translate this example into MIPS assembly:
int x, y;

void main() {

x = x + y;

if (x == y) {

x = x + 3;

}

x = 42 + x * y;

...

}

3

4/12/2002 38

Loading and Storing

�Data is moved explicitly from memory to registers
�Each load/store must specify the address of the memory data to

be read/written
�A MIPS address is just a 32-bit, unsigned integer
�Loads/Stores always use a base register (that holds an address)

together with a 16-bit signed offset.

4/12/2002 39

Load/Store Examples

�Load a word from memory:
lw rt, offset(rs) # regs[rt] = memory[regs[rs] + offset]

�Store a word to memory:
sw rt, offset(rs) # memory[regs[rs] + offset] = regs[rt]

�Real examples:
lw $t6, 4($gp)

sw $t3, -16($fp)

4/12/2002 40

Arithmetic Instructions

�Two basic forms:
OP rd, rs, rt

OPI rt, rs, immed

�Examples:
ADD $t3, $t3, $t5

ADDI $t4, $sp, 4

SUB $t1, $0, $a0

�Instructions to know and love:
� ADD, SUB, ADDI

4/12/2002 41

Multiplication & Division

�These are "special". Multiplying two 32 bit numbers can yield a
result larger than 32 bits, hence:

�MULT/DIV use the HI and LO registers for their results:
MULT rs, rt # HI/LO <- rs * rt

DIV rs, rt # LO <- rs/rt

HI <- rs rem rt

�Talking to the HI/LO registers:
MFHI rd # rd <- HI

MTHI rs # HI <- rs

MFLO rd # rd <- LO

MTLO rs # LO <- rs

4/12/2002 42

Control Flow: Branches

�MIPS lets us compare on...
� equality or inequality of two registers (== or !=)
� comparison of a register to zero (>, <, >=, <=)

�... and then branch to a target that is a signed displacement
(expressed in the number of words) from the instruction
following the branch.

4/12/2002 43

Branches (2)

�Here are examples of the main branch instructions:
BEQ $t0, $t3, 12

BNE $t3, $t4, -112

BGTZ $t7, -100

BGEZ $t7, 12

BLTZ $a0, 24

BLEZ $a1, 2

4

4/12/2002 44

Comparing 2 Registers

�What if you want to branch if register 6 is greater than register
7? Use the SLT instruction:

SLT $t0, $6, $7 # $t0 <- 1 if regs[$6] < regs[$7]

else $t0 <- 0

BNE $t0, $0, 12

4/12/2002 45

Jump Instructions

�Jump instructions allow for unconditional control flow change:
J target # PC <- target

JR rs # PC <- regs[rs]

JAL target # regs[32] <- PC; PC <- target

�Examples:
J 100

JR $t4

JR $ra

JAL 440

� JAL is used to implement procedure call...

4/12/2002 46

Logic Instructions

�Used to manipulate bits within words.
�Have the same form as arithmetic instructions:

OP rd, rs, rt

OPI rt, rs, immed

� OP can be: AND, OR, XOR.
� Examples:

ORI $6, $6, 0x00FF

ORI $7, $0, 0xFF00

AND $8, $8, $7

4/12/2002 47

Shift Instructions

�Used to move bits around within registers.
�Logical shifts (zeros are shifted in from the end):

SLL rd, rt, immed # regs[rd] = regs[rt] << immed

SLLV rd, rt, rs # regs[rd] = regs[rt] << regs[rs]

SRL rd, rt, imemd # regs[rd] = regs[rt] >>> immed

SRLV rd, rt, rs # regs[rd] = regs[rt] >>> regs[rs]

�Arithmetic shift (sign extend from left bit):
SRA rd, rt, immed

SRAV rd, rt, rs

4/12/2002 48

Back to Our Example

�We'll put x into location 0($gp) and y into location 4($gp)
�Here's the assembly code:

lw $t1, 0($gp) # t1 holds x

lw $t2, 4($gp) # t2 holds y

add $t1, $t1, $t2 # x = x + y

sw $t1, 0($gp) # update x

bne $t1, $t2, 2 # branch if t1 != t2

addi $t1, $t1, 3 # x = x + 3

sw $t1, 0($gp) # update x

mult $t1, $t2 # lo = x * y

mflo $t3 # get the result

add $t1, $t3, 42

sw $t1, 0($gp) # update x

4/12/2002 49

Discussion

�We're going to great lengths to preserve the original semantics
of the C program.

�We store the values back to their memory locations after
computing them.

�Why might this be a good idea?
�A bad idea?
�Rewrite the previous example and eliminate as many of the

loads/stores as is reasonable.

5

4/12/2002 50

An Optimized Example

�We eliminate unnecessary loads and stores...
lw $t1, 0($gp) # t1 holds x

lw $t2, 4($gp) # t2 holds y

add $t1, $t1, $t2 # x = x + y

bne $t1, $t2, 2 # branch if t1 != t2

addi $t1, $t1, 3 # x = x + 3

mult $t1, $t2 # lo = x * y

mflo $t3 # get the result

add $t1, $t3, 42

sw $t1, 0($gp) # update x

