Evolution of ISAs

Characterizing ISAs

* Number of aperands per instruction:
* how many operands are specified per instruction
* is the number fixed/variable
 Number of addresses per instruction: how many operands may be
memory addreses
* Regularity of format:
* Variable/fixed length instructions
* Few or many formats
* Number of addressing modes
* Registers: special/general purpose, are they implied in instructions?

s/3/2002 ng

5/3/2002 9

Tour of the Addressing Modes

Accumulator Machines

*Early machines and many microcontrollers use an implied
register called an accumulator
* Operands per instruction: at most 1
* Addresses per instruction: at most 1
* Formats: variable length, few formats for ease of programming
* Addr Modes: few (typically immediate and PC relative)
* Registers: one, implied
*Encode A=B+(

Toad addressg
add addressc
store addressA

Name Example Meaning

* Immediate 100 100

*Register $6 Registers[6]

Register deferred ($6) Memory[Reg[6]]

*Base/Displacement 100($6) Memory[Reg[6] + 100]

*PC-relative 100 PC+100

Deferred @100(s6) Memory[Memory[Reg[6] + 100]
Autoincrement ($6)+ Memory[Reg[6]]; Reg[6] = Reg[6] + size
Autodecrement -(S6) Reg[6] = Reg[6] - 1; Memory[Reg[6]]
Autoincrement deferred @(s6)+ Memory[Memory[Reg[6]]; Reg[6] + Reg[6] + size
513200 m

5/3/2002 m

Stack Machines

CISC Machines

* Machines where data is on an implied stack

* Operands per instruction: at most 1

* Addresses per instruction: at most 1

* Formats: variable length, few formats for ease of programming

* Addr Modes: few (typically immediate and PC relative)

* Registers: none (but there are often hidden registers for performance)
*Encode A=B+(

push addressB
push addresscC
add

pop addressA

* Intel x86, Motorola 680x0 are examples
* They are register-memory architectures (some operands may be memory
addresses)
* Operands per instruction: variable, up to 2
* Addresses per instruction: 1
* Formats: variable length (x86 is between 1 and 17 bytes), many formats
* Addr Modes: x86 has at least 7, 68k has more
* Registers: usually some special purpose and some general

*Encode A=B+(

5/3/2002 7

Toad rl, addresss
add rl, addressc
store rl, addressa

5/3/2002 123

True CISC

* The VAX was/is the ultimate CISC machine
* Operands per instruction: variable, up to 3
* Addresses per instruction: variable, up to 3
* Formats: variable length (1 to 54 bytes!), many formats
* Addr Modes: more than 10
* Registers: 16 general purpose
* Encoding A=B+Cis easy: ADD addressA, addressB, addressC
*VAX included loop instructions, as well as call & return
 VAX was an orthogonalinstruction set -- very complicated implementation

RISCs

*Typically /oad-store architectures
* Operands per instruction: 3
* Addresses per instruction: 0
* Formats: few formats, fixed length
* Addr Modes: few (usually 3 or 4)
* Registers: many general purpose
*Encoding A=B + (.

5/3/2002 125

5/3/2002 il
Summary

Accumulator | Stack asc RISC
Implementation easy easy hard easy
Instruction density | high high high low
Assembly coding medium medium easy tiresome
Compilation medium easy easy hard
Memory overhead | high high highest? lower
Instruction count medium medium low high
Pl medium medium high low
Cycle time high low

Trends

5/3/2002 126

* The 1960s: expensive memory, poor compilers, poor implementation
technologies:
* Goals: simple compilers/assemblers, simple implementation, good density
* Results: simple ISAs, regular formats, compact encoding
*1970s: better impl. technologies, poor compilers, expensive (but fast)
memory, high software costs
* Goals: simple compilers, high code density, easy assembly coding
* Results: powerful ISAs, irregular formats, complicated implementation
*1980s: improved implementation, compilers, cheap (slow) memory:

* Goals: high performance by pipelining, simple imp

* Results: simple ISAs, regular formats, lots of registers

5/3/2002 it

