Course Introduction

What this course is about

« Hardware/Software interface:

« Compilers, assemblers, linkers, loaders: who does what in
terms of getting my program to run?

« What kind of instructions does the machine understand?
+ Organization:

« What are the basic pieces of the machine (registers, cache, ALU,
busses)?

- How are these pieces connected? How are they controlled?
 Performance:

« What does it mean for one machine to be “faster” than another?

« What are MFLOPS, MIPS, benchmark programs?

CSE378

WINTER, 2001

CSE378

WINTER, 2001

Levels of Abstraction

« We can describe a computer system as a set of layers:

Application program
(eg. C/C++/Javaletc)

Programming language architecture
(e.g. C/C++, Lisp, Java, etc)

Machine program

OS architecture (system calls)
0os

Machine architecture (ISA)
(e.g. MIPS, x86, Alpha, etc)

CSE378

WINTER, 2001

Instruction Set Architecture

« ISAis an interface between the hardware and software.

» ISA is what is visible to the programmer (note that the OS and
users might have different view)

+ ISA consists of
« instructions (operations, how are they encoded?)
« information units (what is their size, how are they addressed)
« registers (general or special purpose)
« input-output control

« ISA is an abstract view of the machine: underlying details should
be hidden from the programmer (although this is not always the
case)

CSE378

WINTER, 2001

Computer Families

- Sequence of machines that have the same ISA (binary
compatible). For example:

1. IBM 360 Series (invented the notion of ISA in 1960s)
. DEC PDP-11, VAX [1970s]

. Intel x86 (80386, 80486, Pentium, PII, PIIl, PIV)

. Motorola 680x0

. MIPS Rx000 [1980s to present]

. Sun SPARC [1980s to present]

5. DEC Alpha (21x64) [1990s to present]

- With “portable” software, are “binary compatible” machines
important?

A WOWDNEDN

CSE378

WINTER, 2001

Stored Program Computer

« Instructions and data are binary strings

« 5 basic building blocks: arithmetic (datapath), control, memory,
input, output:

! L
Input ‘ | ‘ Memory ‘ |

I Datapath =

""""" * Control flow
—* Datalinstruction flow

CSE378

WINTER, 2001

10

Computer Generations

1st 2nd 3rd 4th 5th

Proces- || Vacuum transis- inte- LSl VLSI Very
sor tubes tors grated VLSI
Tech- circuits
nology
Proces- || single multi- micros work- 32-bit 64-bit +
sor processor | ple and stations | micro- MP
Struc- func- minis and PCs | comput- | micros
ture tional ers

units
Mem- Vacuum Mag- semi- semi- semi- semi-
ory tubes netic conduc- | cond. cond. cond.

core tors 64KB 512KB | 64 MB
Exam- UNIVAC Bur- PDP-11 | Applell | Apple Alpha,
ple) 1950s roughs 1969-77 | 1978- Mac, SPARC,
machine 5500 mid 80s | 1980s 1990s

1960-68

CSE378 WINTER, 2001
CPU
I\B/Iemory 1/0 Bus
us ;
‘ Control ALU ;
Memory | y
Hierarchy [+ < o)
|
Registers
Status
CSE378 WINTER, 2001

11

The CPU - What does it do?

The CPU “executes” the following program:

while (TRUE) do

fetch the next instruction

decode it

execute it

calcluate the address of the next instruction
end while

How does it know where to find the next instruction?
Where does it “keep” the current instruction?

Where do instructions come from?

When does it stop?

We'll be refining this picture during the next few weeks....

CSE378

WINTER, 2001

Registers

Registers are visible both to hardware and programmer

«» High-speed storage of operands

« Easy to name

« Also used to address memory

Most current computers have 32 or 64 registers

Not all registers are “equal”

» Some are special purpose (eg. in MIPS $0 is hardwired to 0).
« Integer / Floating point

« Conventions (stack pointers)

Why no more than 32 or 647? (at least 3 good reasons)

CSE378

WINTER, 2001

12

14

Instructions

An instruction tells the CPU:

« The operation to be performed (the opcode)

« The operands (zero or more)

For a given instruction, the ISA specifies

- the meaning (semantics) of the opcode

« how many operands are required (and their types)
Operands can be of the following type

« registers

» memory address

« constant (immediate data)

In MIPS, the operands are typically registers or small constants

CSE378 WINTER, 2001
« Memory is a hierarchy of devices/components which get
increasingly faster (and more expensive) as they get nearer to the
CPU:
Memory level Capacity (bytes) Speed Relative Speed Price
Registers 1000s nanosecond 1 ??
Cache 16KB on-chip nanoseconds | 1-2 ??
1MB off-chip 10s of ns 5-10 $100/MB
Primary memory 10-100MB 10sto 100snps 10-100 $1/MB
Secondary mem. 1-10GB 10s of ms 1,000,000 $.01/MB
+ Library metaphor of memory hierarchy
CSE378 WINTER, 2001

13

15

Memory

« Memory is an array of information units
- Each unit has the same size
« Each unit has a unique address
- Address and contents are different

A memory of size N units

Address 0 122
1 -4
2 14
n-1

« A C variable is an abstraction for a memory location

CSE378 WINTER, 2001
« Computers represent all data (integers, floating point numbers,
characters, instructions, etc.) in a binary representation.
Interpretation depends on context.
« Know your (common) powers of two!
Power Value Slang
8 256
10 1024 or ~1000 1K
16 65536 or ~64000 64K
20 ~1,000,000 M
30 ~1,000,000,000 1G
32 ~4,000,000,000 4G
CSE378 WINTER, 2001

16

18

Information Units

+ Basic unit is the bit (storesa 0 ora 1)
« Bits are grouped together into larger units:

« bytes = 8 bits
«words = 4 bytes
« double words = 2 words (8 bytes)

CSE378 WINTER, 2001
2s Complement
» Representing integers: What characteristics does our scheme
need?
« Easy test for positive/negative.
« Equal number of positive and negative numbers
« Easy check for overflow
- Different schemes: sign and magnitude, 1's complement, 2's
complement
« 2's complement tricks (sign bit extension, converting from positive
to negative, addition/subtraction)
» Modern machines use 2s complement
+ 2s complement numbers are easy to add and negate, giving us
subtraction for “free”
« 2s complement tricks: sign extension, negation, addition/
subtraction
» Hexidecimal notation
CSE378 WINTER, 2001

17

19

Addressing

The address space is the set of all information units that a
program can reference

Most machines today are byte addressable

Processor “size” impacts the size of the address space:
« 16 bit processor: 64KB (too small nowadays)

« 32 bit processor: 4GB (starting to be too small)

« 64 bit processor: really big (should last for a while...)

Rule of thumb: We’re using up address space at a rate of around
1 bit per year...

CSE378

WINTER, 2001

20

Addressing Words

» On a byte addressable machine, every word starts at an address
divisable by 4:

A memory of size N bytes

Address 0
4
8

4 [[|

+ Big vs. Little Endian: within a data unit (eg. word), how are the
individual bytes laid out?

- Little/Big: address of data unit is address of low/high order byte
(DEC MIPS is Little; SGI MIPS, SPARC are Big)

CSE378

WINTER, 2001

21

