
4

CSE378 WINTER, 2001

Course Introduction

5

CSE378 WINTER, 2001

What this course is about
• Hardware/Software interface:

• Compilers, assemblers, linkers, loaders: who does what in
terms of getting my program to run?

• What kind of instructions does the machine understand?

• Organization:

• What are the basic pieces of the machine (registers, cache, ALU,
busses)?

• How are these pieces connected? How are they controlled?

• Performance:

• What does it mean for one machine to be “faster” than another?

• What are MFLOPS, MIPS, benchmark programs?

6

CSE378 WINTER, 2001

Levels of Abstraction
• We can describe a computer system as a set of layers:

Application program
(eg. C/C++/Java/etc)

Machine program

OS

Programming language architecture
(e.g. C/C++, Lisp, Java, etc)

OS architecture (system calls)

Machine architecture (ISA)
(e.g. MIPS, x86, Alpha, etc)

7

CSE378 WINTER, 2001

Instruction Set Architecture
• ISA is an interface between the hardware and software.

• ISA is what is visible to the programmer (note that the OS and
users might have different view)

• ISA consists of

• instructions (operations, how are they encoded?)

• information units (what is their size, how are they addressed)

• registers (general or special purpose)

• input-output control

• ISA is an abstract view of the machine: underlying details should
be hidden from the programmer (although this is not always the
case)

8

CSE378 WINTER, 2001

Computer Families
• Sequence of machines that have the same ISA (binary

compatible). For example:
1. IBM 360 Series (invented the notion of ISA in 1960s)

2. DEC PDP-11, VAX [1970s]

1. Intel x86 (80386, 80486, Pentium, PII, PIII, PIV)

2. Motorola 680x0

3. MIPS Rx000 [1980s to present]

4. Sun SPARC [1980s to present]

5. DEC Alpha (21x64) [1990s to present]

• With “portable” software, are “binary compatible” machines
important?

9

CSE378 WINTER, 2001

Computer Generations

1st 2nd 3rd 4th 5th ...

Proces-
sor
Tech-
nology

Vacuum
tubes

transis-
tors

inte-
grated
circuits

LSI VLSI Very
VLSI

Proces-
sor
Struc-
ture

single
processor

multi-
ple
func-
tional
units

micros
and
minis

work-
stations
and PCs

32-bit
micro-
comput-
ers

64-bit +
MP
micros

Mem-
ory

Vacuum
tubes

Mag-
netic
core

semi-
conduc-
tors

semi-
cond.

64KB

semi-
cond.

512 KB

semi-
cond.

64 MB

Exam-
ple
machine

UNIVAC

1950s

Bur-
roughs
5500

1960-68

PDP-11

1969-77

Apple II

1978-
mid 80s

Apple
Mac,
1980s

Alpha,
SPARC,

1990s

10

CSE378 WINTER, 2001

Stored Program Computer
• Instructions and data are binary strings

• 5 basic building blocks: arithmetic (datapath), control, memory,
input, output:

Control

MemoryInput Output

Datapath

Control flow

Data/instruction flow

11

CSE378 WINTER, 2001

Computer Structure

PC

Status

ALUControl

Registers

I/O
Memory
Hierarchy

I/O BusMemory
Bus

CPU

12

CSE378 WINTER, 2001

The CPU - What does it do?
• The CPU “executes” the following program:

while (TRUE) do

 fetch the next instruction

 decode it

 execute it

 calcluate the address of the next instruction

end while

• How does it know where to find the next instruction?

• Where does it “keep” the current instruction?

• Where do instructions come from?

• When does it stop?

• We’ll be refining this picture during the next few weeks....

13

CSE378 WINTER, 2001

Instructions
• An instruction tells the CPU:

• The operation to be performed (the opcode)

• The operands (zero or more)

• For a given instruction, the ISA specifies

• the meaning (semantics) of the opcode

• how many operands are required (and their types)

• Operands can be of the following type

• registers

• memory address

• constant (immediate data)

• In MIPS, the operands are typically registers or small constants

14

CSE378 WINTER, 2001

Registers
• Registers are visible both to hardware and programmer

• High-speed storage of operands

• Easy to name

• Also used to address memory

• Most current computers have 32 or 64 registers

• Not all registers are “equal”

• Some are special purpose (eg. in MIPS $0 is hardwired to 0).

• Integer / Floating point

• Conventions (stack pointers)

• Why no more than 32 or 64? (at least 3 good reasons)

15

CSE378 WINTER, 2001

The Memory System
• Memory is a hierarchy of devices/components which get

increasingly faster (and more expensive) as they get nearer to the
CPU:

• Library metaphor of memory hierarchy

Memory level Capacity (bytes) Speed Relative Speed Price

Registers 1000s nanoseconds 1 ??

Cache 16KB on-chip

1MB off-chip

nanoseconds

10s of ns

1-2

5-10

??

$100/MB

Primary memory 10-100MB 10s to 100s ns 10-100 $1/MB

Secondary mem. 1-10GB 10s of ms 1,000,000 $.01/MB

16

CSE378 WINTER, 2001

Memory
• Memory is an array of information units

• Each unit has the same size

• Each unit has a unique address

• Address and contents are different

• A C variable is an abstraction for a memory location

122

-4

14

0

1

2

n-1

Address

A memory of size N units

17

CSE378 WINTER, 2001

Information Units
• Basic unit is the bit (stores a 0 or a 1)

• Bits are grouped together into larger units:

• bytes = 8 bits

• words = 4 bytes

• double words = 2 words (8 bytes)

18

CSE378 WINTER, 2001

Binary Representation
• Computers represent all data (integers, floating point numbers,

characters, instructions, etc.) in a binary representation.
Interpretation depends on context.

• Know your (common) powers of two!

Power Value Slang

8 256 ...

10 1024 or ~1000 1K

16 65536 or ~64000 64K

20 ~1,000,000 1M

30 ~1,000,000,000 1G

32 ~4,000,000,000 4G

19

CSE378 WINTER, 2001

2s Complement
• Representing integers: What characteristics does our scheme

need?

• Easy test for positive/negative.

• Equal number of positive and negative numbers

• Easy check for overflow

• Different schemes: sign and magnitude, 1’s complement, 2’s
complement

• 2’s complement tricks (sign bit extension, converting from positive
to negative, addition/subtraction)

• Modern machines use 2s complement

• 2s complement numbers are easy to add and negate, giving us
subtraction for “free”

• 2s complement tricks: sign extension, negation, addition/
subtraction

• Hexidecimal notation

20

CSE378 WINTER, 2001

Addressing
• The address space is the set of all information units that a

program can reference

• Most machines today are byte addressable

• Processor “size” impacts the size of the address space:

• 16 bit processor: 64KB (too small nowadays)

• 32 bit processor: 4GB (starting to be too small)

• 64 bit processor: really big (should last for a while...)

• Rule of thumb: We’re using up address space at a rate of around
1 bit per year...

21

CSE378 WINTER, 2001

Addressing Words
• On a byte addressable machine, every word starts at an address

divisable by 4:

• Big vs. Little Endian: within a data unit (eg. word), how are the
individual bytes laid out?

• Little/Big: address of data unit is address of low/high order byte
(DEC MIPS is Little; SGI MIPS, SPARC are Big)

0

4

8

n-4

Address

A memory of size N bytes

