
1

5/21/2002 154

Hazards

5/21/2002 155

Introduction

� Recall that pipelining so far has been "ideal"
� In reality, we have to deal with these issues:

� Data hazards:

add $7, $12, $15

sub $8, $7, $12

and $9, $13, $7

� We can show dependencies in diagrams like the one below. Arrows that go
backwards in time are bad news!

� Control hazards: if we take a branch, the instructions immediately following are
the wrong ones to have fetched...

5/21/2002 156

Data Hazards

5/21/2002 157

Defining Dependencies/Hazards

� Dependencies: Given two instructions m and n (m occurs before n)
� A dependence exists between m and n if n reads the result produced by

m, and there is no instruction k which occurs between m and n that
produces the same result as m.

� We call the dependence a hazard when an instruction tries to read a value
in the ID stage that will be written by a prior instruction that has not yet
completed WB.

� Hazards are defined with respect to a particular implementation.
� Read-after-write hazards/dependencies.

5/21/2002 158

Strategies for Resolving Hazards

� Stalling: detect the hazard, and then inject bubbles (nops) into the
pipeline until the hazard clears. Not a great idea. If we stalled for 3
cycles to let each R-type instruction finish, our performance would be
terrible...

� Forwarding: pass results to the ALU from different stages in the pipe.
� Static scheduling: make the compiler avoid generating code that gives

rise to hazards. If it can't do so, it must insert nops.
� Dynamic scheduling: Build hardware that can reorder instructions (at run

time) to avoid hazards. If it can't do so, it injects nops.

5/21/2002 159

Detecting Hazards

� Between instruction i+1 and i (insert 3 bubbles):
� ID/EX.WriteReg == IF/ID read-register 1 or 2

� Between instruction i+2 and i (insert 2 bubbles):
� EX/MEM.WriteReg == IF/ID read register 1 or 2

� Between instruction i+3 and i (insert 1 bubble):
� MEM/WB.WriteReg == IF/ID read register 1 or 2

2

5/21/2002 160

Stalling

� Once we have detected a hazard, we can stall the pipeline.
� Stalls stop instructions in the ID stage. We must stop fetching new

instructions (to avoid clobbering PC and IF/ID register). Control lines:
� Create bubbles. Done by setting all control lines from ID to zero. Creating a nop.
� Prevent new instruction fetches (or PC updates).

� Our scheme is conservative:
� Is the RegWrite control bit asserted (if not, we're off the hook).
� Build a better Register file. If a register is both read and written on the same

cycle, we currently get the old value. We can improve the register file to provide
the right data in this case. This takes care of the case between WB and Decode.

5/21/2002 161

Forwarding

� Stalling is pessimistic, because we often do have the right values
available (they just haven't been written yet).

� At the end of the EX stage for R-type instructions
� At the end of the MEM stage for Load instructions.

� Why not forward the result of the computation (or load) directly to the
input of the ALU?

� (Note, we still want to force the writeback to occur in the final stage, due
to issues related to exceptions.)

5/21/2002 162

Forwarding Example

5/21/2002 163

Implementing Forwarding

� Change datapath so that data can be read either from the EX/MEM or
MEM/WB registers and be forwarded to one of the ALU inputs.

� Hazard logic for EX stage:
� if EX/MEM.RegWrite AND EX/MEM.DestReg == ID/EX.rs
� if EX/MEM.RegWrite AND EX/MEM.DestReg == ID.EX.rt

� Hazard logic for MEM stage:
� if MEM/WB.RegWrite AND EX/MEM.DestReg != ID/EX.rs AND MEM/WB.DestReg ==

ID/EX.rs
� if MEM/WB.RegWrite AND EX/MEM.DestReg != ID/EX.rt AND MEM/WB.DestReg ==

ID/EX.rt

5/21/2002 164

The Trouble with Loads

� Forwarding can't save the day with loads (if they're followed immediately
by a dependent R-type instruction).

5/21/2002 165

Loads

� Must insert a bubble after the load in this case, so we still need a hazard
detection unit.

� Good compilers will try to schedule non-dependent instructions after the
load...

3

5/21/2002 166

Datapath with Forwarding & Hazard Detection

5/21/2002 167

Control Hazards

� The transfer of control, via jumps and branches causes this class of
hazard.

� The branch instruction decides in the EX stage if the branch will be taken.
It doesn't update the PC until the end of the MEM stage.

� Hence, we will have erroneously fetched 3 instructions (if the branch is
taken).

5/21/2002 168

Control Hazards in Pictures

5/21/2002 169

Resolving the Hazard

� Detecting it is easy: just look at the opcode!
� At least 4 strategies:

� Always stall: Stall as soon as we see a branch. This costs a tiny bit of control
hardware and 3 cycles for each branch!

� Assume branch not taken: Just go ahead and start executing the subsequent
instructions. If the branch is taken, then flush the improper instructions. Costs
more hardware, but 3 cycles only if the branch is taken.

� Delayed branches: Change the semantics of the branch instruction -- force the
compiler/assembler to deal with the problem.

� Branch prediction: Try to guess. Still have to be prepared to flush the pipeline if
you were wrong!

5/21/2002 170

Assume Not Taken

� Need to flush instructions from the pipe if the branch is eventually taken.
� First, move all branch activity to the EX stage. This means we'll have to

flush two instructions (the one in ID and the one just fetched by IF).
� For IF: we zero out the instruction field in the IF/ID register.
� For ID: just set all control lines to zero, creating a NOP.

� Rule of thumb:
� Forward branches are taken 60% of the time.
� Backward branches (loops) are taken 90% of the time.

� Performance?

5/21/2002 171

Delayed Branches

� Change the meaning of branches: they don't have effect until N cycles
later. (N is the branch delay.)

� The N instructions after the branch will be executed regardless of the
branch outcome.

� Costs zero hardware! (The compiler/assembler must insert nops after the
branch if they can't put other instructions there.)

� Good compilers can fill 1 or 2 slots, but more is hard.
� (Real) MIPS branches are delayed by one cycle. Compilers fill 70% of the

delay slots.
� Performance?

4

5/21/2002 172

Prediction

� Build a history table and use it to make a guess.
� If you're wrong, you still have to flush the pipeline.
� Note that you still can't get rid of the delay entirely. Why? Because it will

take you at least a cycle to look up the branch target. The earliest you
can get the new target is in the ID stage, so you still may have to flush an
instruction...

� Predict-not-taken is just a special case of branch prediction
� Even pretty simple branch prediction units are correct 90% of the time.
� Performance compared to other schemes?

5/21/2002 173

Exceptions

� Historical definitions:
� Exceptions: an unexpected event from within the processor (divide-by-zero)
� Interrupt: an unexpected event from outside the processor (such as I/O request)

� MIPS calls them all exceptions.
� Kinds:

� I/O device request (external)
� System call (internal)
� Undefined instruction (internal)
� Hardware malfunction (either)
� Breakpoint (internal)

5/21/2002 174

Handling Exceptions

� Save the program counter of the offending instruction: EPC.
� Set up the cause register (what kind of exception)
� Transfer control to the OS (to a fixed address).
� The OS then takes appropriate action:

� Illegal instruction: kill the program
� I/O device: handle the request
� Timer: switch to another program
� Breakpoint: switch to the debugger, etc.

� Suppose we get a divide-by-zero in EX. We need to be sure to let the
downstream instructions complete, while flushing the upstream
instructions.

