
1

4/8/2002 14

General Purpose Machines

4/8/2002 15

Recall the Super Simple ISA

�Our only instructions:
� ADD a, b, c
� IMM a, ?, value
� BNE target, b, c

�We've seen that we can do things (painfully) using this ISA. We
ought to be able to write programs that simulate the other
(special purposes) we looked at previously.

4/8/2002 16

Implementation Issues

�Think about the ADD instruction: ADD a, b, c
�Unfortunately, this instruction needs to make 3 memory

references (read two operands and write the result).
�Memory can only (actually) do one thing per cycle (either a load

or store).
�So how can we implement this instruction in our machine?

� Make some instructions take more than one cycle.
� Make the ISA simpler!

4/8/2002 17

Make it Simpler

�We can make our instructions "simpler" by not making them
operate on memory locations, but registers.

�ADD a, b, c
register[a] = register[b] + register[c]

�IMM a, ?, value
register[a] = value

�BNE target, b, c
if (register[b] != register[c]) PC = target

4/8/2002 18

Add a Couple of Instructions

� Now we still need a way to get data to/from memory, so we add two
instructions to do this:

� LOAD a, b
register[a] = memory[register[b]]

� STORE c, b
memory[register[b]] = register[c]

� IMPORTANT: a and b are register numbers (that contain addresses)

4/8/2002 19

A Simple Program

This program sums values in memory starting at address 100
IMM R1, 0 # reg one holds zero

IMM R2, 0 # reg 2 will hold our sum

IMM R3, 1 # reg 3 will hold 1

IMM R4, 100 # reg 4 will be our "index"

LOAD R5, R4

ADD R2, R2, R5 # sum = sum + val

ADD R4, R4, R3 # index = index + 1

BNE 16, R5, R1 # keep going if not zero

This program is in "assembly code" -- it's a human readable form of
machine code. Imagine translating this program into machine code.

2

4/8/2002 20

Limitations of this ISA

�How big can memory be?
�How many registers can we name?
�Adding immediate values seems like a pain.
�Not very expressive.
�But...

4/8/2002 21

Implementing the Machine

�Datapath components:
� Memory, register file, an adder for the PC, an adder for arithmetic, a

comparator for branches.

�Draw it.

4/8/2002 22

Implementing Control

�Control: a way of deciding when/if to write various registers,
memory, etc.

�We need to decide the following:
� Should we write the reg file?
� Should we read memory?
� Should we write memory?
� Which PC do we select?
� Which value do we write to the reg file (memory, immediate, addition

result)?

4/8/2002 23

Control Truth Table

100011LOAD
x1000BNE
010001IMM

WriteValPCSelMemWriteMemReadRegWrite

x0100STORE

000001ADD

4/8/2002 24

The Logic

�It seems more complicated than it should be.
� We write a register when the operation is IMM, ADD, or LOAD.
� We read memory when the operation is LOAD (opcode 3).
� etc...

�A trick: by doing a good job of picking our opcodes, we can
make the control logic much simpler.

4/8/2002 25

Control the Easy Way

�We can literally encode control in the opcode:
� Bits 0 and 1 = ALUop
� Bit 2 = MemRead
� Bit 3 = MemWrite
� Bit 4 = Branch
� Bit 5 = RegWrite
� Bits 6 and 7 = WriteVal

�ADD: 00100000; IMM: 0110000; BNE: 00010001
�LOAD: 10100100; STORE: 00001000

