
1

4/22/2002 65

Instruction Encoding

4/22/2002 66

Introduction

�An ISA defines a particular encoding (syntax) for each instruction
it defines.

�It also defines the meaning (semantics) of that instruction.
�Typically, an ISA will define a number of different formats.
�Each format has different fields:

� OPCODE says what the instruction does
� OPERAND (fields) say where to find the inputs to the instruction

4/22/2002 67

MIPS Encoding

�The nice thing about MIPS (and other RISC ISAs) is that it has
very few formats (basically just 3).

�All instructions are the same size (1 word = 32 bits)
�The 3 formats:

� I-type (2 registers and an immediate value)
� R-type (3 registers)
� J-type (used only for jumps)

4/22/2002 68

I-type Format

�An immediate instruction has the form:
XXXI rt, rs, immed

�Recall that we have 32 registers in MIPS, so we need ?? bits
each to specify the rt and rs registers

�We allow 6 bits for the opcode (this implies a maximum of ??
opcodes -- but there are actually more).

�This leaves 16 bits for the immediate field:

0162126

OPCODE rs rt immed

4/22/2002 69

I-type Example

�Example:
ADDI $a0, $12, 33 # a0 <- r12 + 33

�The ADDI opcode is 8, register a0 is register #4.

�What is this in binary? In hex?

0162126

8 12 4 33

4/22/2002 70

Load/Store Instructions

�Recall that addresses are 32 bits. For this reason they can't be
encoded directly in the instruction.

�Load/Store instructions take a register (containing an address)
and an immediate offset.

�Example:
LW $14, 8($SP) # r14 is loaded from stack+8

0162126

2

4/22/2002 71

R-Type Instructions

�General form:
XXX rd, rs, rt

�All arithmetic/logical/comparison instructions require 3 regs.
�To keep the format regular, the OPCODE is always zero, and the

real function is encoded in another 6 bit field.
�A 5-bit shift amount is also encoded in this format.

0162126

0 rs rt

611

rd shamt func

4/22/2002 72

R-type Example

�Example:
SUB $7, $8, $9

�The opcode zero, the function code for SUB is 34.

0162126 611

4/22/2002 73

J-type Format

�For a Jump, we only need to specify the opcode, and we can use
the other bits for an address.

�We only have 26 bits of space, but addresses are 32 bits...

�The address must reference an instruction, so we drop the low
two bits. We get the other 4 bits by combining with the PC.

�(We can jump pretty far...)

026

OPC address

4/22/2002 74

Branch Addressing

�BEQ/BNE are encoded (almost) like any old I-type instruction:
XXX rs, rt, offset

BEQ $14, $8, 1000

� The opcode for BEQ is 4

0162126

4/22/2002 75

Full Example

�Recall our loop example:
.data

array: .space 400

.text

main: add $t0, $0, $0 # use t0 as a counter (i)

addi $t1, $gp, array # t1 holds an address

addi $t2, $0, 100 # t2 holds constant 100

start: slt $t3, $t0, $t2

beq $t3, $0, done

sw $t0, 0($t1) # a[i] = i

addi $t0, $t0, 1 # i = i + 1

addi $t1, $t1, 4 # why are we adding 4?

j start

done: jr $ra # return to caller

4/22/2002 76

Encoded:

�Here is the encoded version:
Address: Machine code Disassembly

00000000 0x00004020: add $t0, $0, $0

00000004 0x23890000: addi $t1, $gp, 0

00000008 0x200a0064: addi $t2, $0, 100

0000000c 0x010a582a: slt $t3, $t0, $t2

00000010 0x100b0004: beq $t3, $0, 4

00000014 0xad280000: sw $t0, $t1, 0

00000018 0x21080001: addi $t0, $t0, 1

0000001c 0x21290004: addi $t1, $t1, 4

00000020 0x08000003: j 0x3

00000024 0x03e00008: jr $0, $ra, $0

